湖北省襄阳市襄州区黄龙中学2023-2024学年中考数学押题试卷含解析_第1页
湖北省襄阳市襄州区黄龙中学2023-2024学年中考数学押题试卷含解析_第2页
湖北省襄阳市襄州区黄龙中学2023-2024学年中考数学押题试卷含解析_第3页
湖北省襄阳市襄州区黄龙中学2023-2024学年中考数学押题试卷含解析_第4页
湖北省襄阳市襄州区黄龙中学2023-2024学年中考数学押题试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省襄阳市襄州区黄龙中学2023-2024学年中考数学押题试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算-4-|-3|的结果是()A.-1B.-5C.1D.52.下列各式中计算正确的是A. B. C. D.3.有两把不同的锁和三把钥匙,其中两把钥匙恰好分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是()A. B. C. D.4.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣55.一个几何体的三视图如图所示,那么这个几何体是()A. B. C. D.6.下列计算中,正确的是()A. B. C. D.7.如果关于x的分式方程有负数解,且关于y的不等式组无解,则符合条件的所有整数a的和为()A.﹣2 B.0 C.1 D.38.共享单车为市民短距离出行带来了极大便利.据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为()A.259×104 B.25.9×105 C.2.59×106 D.0.259×1079.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是()A.图2 B.图1与图2 C.图1与图3 D.图2与图310.3的倒数是()A. B. C. D.11.下列各式计算正确的是()A.a2+2a3=3a5 B.a•a2=a3 C.a6÷a2=a3 D.(a2)3=a512.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是A.3 B. C. D.4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为_____.14.化简:=____.15.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B4的坐标为_____,点B2017的坐标为_____.16.举重比赛的总成绩是选手的挺举与抓举两项成绩之和,若其中一项三次挑战失败,则该项成绩为0,甲、乙是同一重量级别的举重选手,他们近三年六次重要比赛的成绩如下(单位:公斤):如果你是教练,要选派一名选手参加国际比赛,那么你会选择_____(填“甲”或“乙”),理由是___________.17.函数中自变量的取值范围是______________18.已知x1,x2是方程x2+6x+3=0的两实数根,则的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,将等腰直角三角形纸片ABC对折,折痕为CD.展平后,再将点B折叠在边AC上(不与A、C重合),折痕为EF,点B在AC上的对应点为M,设CD与EM交于点P,连接PF.已知BC=1.(1)若M为AC的中点,求CF的长;(2)随着点M在边AC上取不同的位置,①△PFM的形状是否发生变化?请说明理由;②求△PFM的周长的取值范围.20.(6分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:收集数据:30608150401101301469010060811201407081102010081整理数据:课外阅读平均时间x(min)0≤x<4040≤x<8080≤x<120120≤x<160等级DCBA人数3a8b分析数据:平均数中位数众数80mn请根据以上提供的信息,解答下列问题:(1)填空:a=,b=;m=,n=;(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?21.(6分)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH=,DM=4时,求DH的长.22.(8分)先化简,再求值:,其中m是方程的根.23.(8分)如图,在⊙O中,AB是直径,点C是圆上一点,点D是弧BC中点,过点D作⊙O切线DF,连接AC并延长交DF于点E.(1)求证:AE⊥EF;(2)若圆的半径为5,BD=6求AE的长度.24.(10分)解不等式组,请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式的解集为.25.(10分)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.26.(12分)如图,点A.F、C.D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形,(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.27.(12分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求证:CF⊥DE于点F.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】

原式利用算术平方根定义,以及绝对值的代数意义计算即可求出值.【详解】原式=-2-3=-5,故选:B.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2、B【解析】

根据完全平方公式对A进行判断;根据幂的乘方与积的乘方对B、C进行判断;根据合并同类项对D进行判断.【详解】A.,故错误.B.,正确.C.,故错误.D.,故错误.故选B.【点睛】考查完全平方公式,合并同类项,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.3、B【解析】解:将两把不同的锁分别用A与B表示,三把钥匙分别用A,B与C表示,且A钥匙能打开A锁,B钥匙能打开B锁,画树状图得:∵共有6种等可能的结果,一次打开锁的有2种情况,∴一次打开锁的概率为:.故选B.点睛:本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.4、B【解析】

根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【详解】∵关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,

∴-2+m=−,

解得,m=-1,

故选B.5、C【解析】由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱.故选C.6、D【解析】

根据积的乘方、合并同类项、同底数幂的除法以及幂的乘方进行计算即可.【详解】A、(2a)3=8a3,故本选项错误;B、a3+a2不能合并,故本选项错误;C、a8÷a4=a4,故本选项错误;D、(a2)3=a6,故本选项正确;故选D.【点睛】本题考查了积的乘方、合并同类项、同底数幂的除法以及幂的乘方,掌握运算法则是解题的关键.7、B【解析】

解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.【详解】由关于y的不等式组,可整理得∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵得x=而关于x的分式方程有负数解∴a﹣4<1∴a<4于是﹣3≤a<4,且a为整数∴a=﹣3、﹣2、﹣1、1、1、2、3则符合条件的所有整数a的和为1.故选B.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.8、C【解析】

绝对值大于1的正数可以科学计数法,a×10n,即可得出答案.【详解】n由左边第一个不为0的数字前面的0的个数决定,所以此处n=6.【点睛】本题考查了科学计数法的运用,熟悉掌握是解决本题的关键.9、C【解析】【分析】根据角平分线的作图方法可判断图1,根据图2的作图痕迹可知D为BC中点,不是角平分线,图3中根据作图痕迹可通过判断三角形全等推导得出AD是角平分线.【详解】图1中,根据作图痕迹可知AD是角平分线;图2中,根据作图痕迹可知作的是BC的垂直平分线,则D为BC边的中点,因此AD不是角平分线;图3:由作图方法可知AM=AE,AN=AF,∠BAC为公共角,∴△AMN≌△AEF,∴∠3=∠4,∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,∴DM=DE,又∵AD是公共边,∴△ADM≌△ADE,∴∠1=∠2,即AD平分∠BAC,故选C.【点睛】本题考查了尺规作图,三角形全等的判定与性质等,熟知角平分的尺规作图方法、全等三角形的判定与性质是解题的关键.10、C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.11、B【解析】

根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变,指数相减;同底数幂相乘,底数不变指数相加,对各选项分析判断利用排除法求解【详解】A.a2与2a3不是同类项,故A不正确;B.a•a2=a3,正确;C.原式=a4,故C不正确;D.原式=a6,故D不正确;故选:B.【点睛】此题考查同底数幂的乘法,幂的乘方与积的乘方,解题的关键在于掌握运算法则.12、B【解析】试题分析:解:当射线AD与⊙C相切时,△ABE面积的最大.连接AC,∵∠AOC=∠ADC=90°,AC=AC,OC=CD,∴Rt△AOC≌Rt△ADC,∴AD=AO=2,连接CD,设EF=x,∴DE2=EF•OE,∵CF=1,∴DE=,∴△CDE∽△AOE,∴=,即=,解得x=,S△ABE===.故选B.考点:1.切线的性质;2.三角形的面积.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、5【解析】由题意得,,.∴原式14、【解析】

先利用除法法则变形,约分后通分并利用同分母分式的减法法则计算即可.【详解】原式,

故答案为【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.15、(20,4)(10086,0)【解析】

首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案.【详解】解:由题意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的横坐标为:10,B4的横坐标为:2×10=20,B2016的横坐标为:×10=1.∵B2C2=B4C4=OB=4,∴点B4的坐标为(20,4),∴B2017的横坐标为1++=10086,纵坐标为0,∴点B2017的坐标为:(10086,0).故答案为(20,4)、(10086,0).【点睛】本题主要考查了点的坐标以及图形变化类,根据题意得出B点横坐标变化规律是解题的关键.16、乙乙的比赛成绩比较稳定.【解析】

观察表格中的数据可知:甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定;乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定,据此可得结论.【详解】观察表格中的数据可得,甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定;乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定;所以要选派一名选手参加国际比赛,应该选择乙,理由是乙的比赛成绩比较稳定.故答案为乙,乙的比赛成绩比较稳定.【点睛】本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.17、x≤2且x≠1【解析】

解:根据题意得:且x−1≠0,解得:且故答案为且18、1.【解析】试题分析:∵,是方程的两实数根,∴由韦达定理,知,,∴===1,即的值是1.故答案为1.考点:根与系数的关系.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)CF=;(2)①△PFM的形状是等腰直角三角形,不会发生变化,理由见解析;②△PFM的周长满足:2+2<(1+)y<1+1.【解析】

(1)由折叠的性质可知,FB=FM,设CF=x,则FB=FM=1﹣x,在Rt△CFM中,根据FM2=CF2+CM2,构建方程即可解决问题;(2)①△PFM的形状是等腰直角三角形,想办法证明△POF∽△MOC,可得∠PFO=∠MCO=15°,延长即可解决问题;②设FM=y,由勾股定理可知:PF=PM=y,可得△PFM的周长=(1+)y,由2<y<1,可得结论.【详解】(1)∵M为AC的中点,∴CM=AC=BC=2,由折叠的性质可知,FB=FM,设CF=x,则FB=FM=1﹣x,在Rt△CFM中,FM2=CF2+CM2,即(1﹣x)2=x2+22,解得,x=,即CF=;(2)①△PFM的形状是等腰直角三角形,不会发生变化,理由如下:由折叠的性质可知,∠PMF=∠B=15°,∵CD是中垂线,∴∠ACD=∠DCF=15°,∵∠MPC=∠OPM,∴△POM∽△PMC,∴=,∴=,∵∠EMC=∠AEM+∠A=∠CMF+∠EMF,∴∠AEM=∠CMF,∵∠DPE+∠AEM=90°,∠CMF+∠MFC=90°,∠DPE=∠MPC,∴∠DPE=∠MFC,∠MPC=∠MFC,∵∠PCM=∠OCF=15°,∴△MPC∽△OFC,∴,∴,∴,∵∠POF=∠MOC,∴△POF∽△MOC,∴∠PFO=∠MCO=15°,∴△PFM是等腰直角三角形;②∵△PFM是等腰直角三角形,设FM=y,由勾股定理可知:PF=PM=y,∴△PFM的周长=(1+)y,∵2<y<1,∴△PFM的周长满足:2+2<(1+)y<1+1.【点睛】本题考查三角形综合题、等腰直角三角形的性质和判定、翻折变换、相似三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考常考题型.20、(1)a=5,b=4;m=81,n=81;(2)300人;(3)16本【解析】

(1)根据统计表收集数据可求a,b,再根据中位数、众数的定义可求m,n;(2)达标的学生人数=总人数×达标率,依此即可求解;(3)本题需先求出阅读课外书的总时间,再除以平均阅读一本课外书的时间即可得出结果.【详解】解:(1)由统计表收集数据可知a=5,b=4,m=81,n=81;(2)(人).答:估计达标的学生有300人;(3)80×52÷260=16(本).答:估计该校学生每人一年(按52周计算)平均阅读16本课外书.【点睛】本题主要考查统计表以及中位数,众数,估计达标人数等,能够从统计表中获取有效信息是解题的关键.21、(1)证明见解析;(2)结论:成立.理由见解析;(3)①30°,②1+.【解析】

(1)只要证明AB=ED,AB∥ED即可解决问题;(2)成立.如图2中,过点M作MG∥DE交CE于G.由四边形DMGE是平行四边形,推出ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,可知AB∥DE,AB=DE,即可推出四边形ABDE是平行四边形;

(3)①如图3中,取线段HC的中点I,连接MI,只要证明MI=AM,MI⊥AC,即可解决问题;②设DH=x,则AH=x,AD=2x,推出AM=4+2x,BH=4+2x,由四边形ABDE是平行四边形,推出DF∥AB,推出,可得,解方程即可;【详解】(1)证明:如图1中,∵DE∥AB,∴∠EDC=∠ABM,∵CE∥AM,∴∠ECD=∠ADB,∵AM是△ABC的中线,且D与M重合,∴BD=DC,∴△ABD≌△EDC,∴AB=ED,∵AB∥ED,∴四边形ABDE是平行四边形.(2)结论:成立.理由如下:如图2中,过点M作MG∥DE交CE于G.∵CE∥AM,∴四边形DMGE是平行四边形,∴ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,∴AB∥DE,AB=DE,∴四边形ABDE是平行四边形.(3)①如图3中,取线段HC的中点I,连接MI,∵BM=MC,∴MI是△BHC的中位线,∴MI∥BH,MI=BH,∵BH⊥AC,且BH=AM.∴MI=AM,MI⊥AC,∴∠CAM=30°.②设DH=x,则AH=x,AD=2x,∴AM=4+2x,∴BH=4+2x,∵四边形ABDE是平行四边形,∴DF∥AB,∴,∴,解得x=1+或1﹣(舍弃),∴DH=1+.【点睛】本题考查了四边形综合题、平行四边形的判定和性质、直角三角形30度角的判定、平行线分线成比例定理、三角形的中位线定理等知识,解题的关键能正确添加辅助线,构造特殊四边形解决问题.22、原式=.∵m是方程的根.∴,即,∴原式=.【解析】试题分析:先通分计算括号里的,再计算括号外的,化为最简,由于m是方程的根,那么,可得的值,再把的值整体代入化简后的式子,计算即可.试题解析:原式=.∵m是方程的根.∴,即,∴原式=.考点:分式的化简求值;一元二次方程的解.23、(1)详见解析;(2)AE=6.1.【解析】

(1)连接OD,利用切线的性质和三角形的内角和证明OD∥EA,即可证得结论;(2)利用相似三角形的判定和性质解答即可.【详解】(1)连接OD,∵EF是⊙O的切线,∴OD⊥EF,∵OD=OA,∴∠ODA=∠OAD,∵点D是弧BC中点,∴∠EAD=∠OAD,∴∠EAD=∠ODA,∴OD∥EA,∴AE⊥EF;(2)∵AB是直径,∴∠ADB=90°,∵圆的半径为5,BD=6∴AB=10,BD=6,在Rt△ADB中,,∵∠EAD=∠DAB,∠AED=∠ADB=90°,∴△AED∽△ADB,∴,即,解得:AE=6.1.【点睛】本题考查了切线的性质,相似三角形的判定和性质,勾股定理的应用以及圆周角定理,关键是利用切线的性质和相似三角形判定和性质进行解答.24、(1)x≤1;(1)x≥﹣1;(3)见解析;(4)﹣1≤x≤1.【解析】

先求出不等式的解集,再求出不等式组的解集即可.【详解】解:(1)解不等式①,得x≤1,(1)解不等式②,得x≥﹣1,(3)把不等式①和②的解集在数轴上表示出来:;(4)原不等式组的解集为﹣1≤x≤1,故答案为x≤1,x≥﹣1,﹣1≤x≤1.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.25、证明见解析.【解析】

利用三角形中位线定理判定OE∥BC,且OE=BC.结合已知条件CF=BC,则OE//CF,由“有一组对边平行且相等的四边形为平行四边形”证得结论.【详解】∵四边形ABCD是平行四边形,∴点O是BD的中点.又∵点E是边CD的中点,∴OE是△BCD的中位线,∴OE∥BC,且OE=BC.又∵CF=BC,∴OE=CF.又∵点F在BC的延长线上,∴OE∥CF,∴四边形OCFE是平行四边形.【点睛】本题考查了平行四边形的性质和三角形中位线定理.此题利用了“平行四边形的对角线互相平分”的性质和“有一组对边平行且相等的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论