版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省常州市勤业中学八年级数学第一学期期末调研模拟试题拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列图形是轴对称图形的是()A. B. C. D.2.如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,,,那么下列式子中正确的是()A. B. C. D.3.若x2+mxy+4y2是一个完全平方式,那么m的值是()A.±4 B.﹣2 C.±2 D.44.中,的对边分别是,且,则下列说法正确的是()A.是直角 B.是直角 C.是直角 D.是锐角5.化简式子的结果为()A. B. C. D.6.下列各组条件中,能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.AB=DE,BC=EF,△ABC的周长=△DEF的周长D.∠A=∠D,∠B=∠E,∠C=∠F7.下列各式中,正确的是()A. B. C. D.8.如图,,,,下列条件中不能判断的是()A. B. C. D.9.下列说法正确的是()A.所有命题都是定理B.三角形的一个外角大于它的任一内角C.三角形的外角和等于180°D.公理和定理都是真命题10.已知三角形的三边长为,如果,则是()A.等边三角形 B.等腰直角三角形 C.等腰三角形 D.直角三角形二、填空题(每小题3分,共24分)11.计算:(x+5)(x-7)=_____.12.如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P,则∠BPE=_______________.13.如图,一张三角形纸片,其中,,,现小林将纸片做三次折叠:第一次使点落在处;将纸片展平做第二次折叠,使点若在处;再将纸片展平做第三次折叠,使点落在处,这三次折叠的折痕长依次记为,则的大小关系是(从大到小)__________.14.如图,中,,将折叠,使点与的中点重合,折痕为则线段的长为________.15.如果实数x满足,那么代数式的值为.16.如图,点E在边DB上,点A在内部,∠DAE=∠BAC=90°,AD=AE,AB=AC,给出下列结论,其中正确的是_____(填序号)①BD=CE;②∠DCB=∠ABD=45°;③BD⊥CE;④BE2=2(AD2+AB2).17.如图,在中,平分于点,如果,那么等于_____________.18.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.三、解答题(共66分)19.(10分)如图,有一个池塘,要到池塘两侧AB的距离,可先在平地上取一个点C,从C不经过池塘可以到达点A和B,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE,那么量出DE的长就是A,B的距离,为什么?20.(6分)某客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数,且部分对应关系如表所示.(kg)…253545…(元)…357…(1)求关于的函数表达式;(2)求旅客最多可免费携带行李的质量;(3)当行李费(元)时,可携带行李的质量(kg)的取值范围.21.(6分)雾霾天气持续笼罩我国大部分地区,困扰着广大市民的生活,口罩市场出现热销,小明的爸爸用12000元购进甲、乙两种型号的口罩在自家商店销售,销售完后共获利2700元,进价和售价如表:(1)小明爸爸的商店购进甲、乙两种型号口罩各多少袋?(2)该商店第二次以原价购进甲、乙两种型号口罩,购进甲种型号口罩袋数不变,而购进乙种型号口罩袋数是第一次的2倍,甲种口罩按原售价出售,而效果更好的乙种口罩打折让利销售,若两种型号的口罩全部售完,要使第二次销售活动获利不少于2460元,每袋乙种型号的口罩最多打几折?22.(8分)一辆货车从甲地匀速驶往乙地,到达乙地停留一段时间后,沿原路以原速返回甲地.货车出发一段时间后,一辆轿车以的速度从甲地匀速驶往乙地.货车出发时,两车在距离甲地处相遇,货车回到甲地的同时轿车也到达乙地.货车离甲地的距离、轿车离甲地的距离分别与货车所用时间之间的函数图像如图所示.(1)货车的速度是______,的值是______,甲、乙两地相距______;(2)图中点表示的实际意义是:______.(3)求与的函数表达式,并求出的值;(4)直接写出货车在乙地停留的时间.23.(8分)如图,在长方形中,分别是线段上的点,且四边形是长方形.(1)若点在线段上,且,求线段的长.(2)若是等腰三角形,求的长.24.(8分)我们定义:两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.例如:某三角形三边长分别是2,4,,因为,所以这个三角形是奇异三角形.(1)根据定义:“等边三角形是奇异三角形”这个命题是______命题(填“真”或“假命题”);(2)在中,,,,,且,若是奇异三角形,求;(3)如图,以为斜边分别在的两侧作直角三角形,且,若四边形内存在点,使得,.①求证:是奇异三角形;②当是直角三角形时,求的度数.25.(10分)某甜品店用,两种原料制作成甲、乙两款甜品进行销售,制作每份甜品的原料所需用量如下表所示.该店制作甲款甜品份,乙款甜品份,共用去原料2000克.原料款式原料(克)原料(克)甲款甜品3015乙款甜品1020(1)求关于的函数表达式;(2)已知每份甲甜品的利润为5元,每份乙甜品的利润为2元.假设两款甜品均能全部卖出.若获得总利润不少于360元,则至少要用去原料多少克?26.(10分)如图,已知直线y=kx+6经过点A(4,2),直线与x轴,y轴分别交于B、C两点.(1)求点B的坐标;(2)求△OAC的面积.
参考答案一、选择题(每小题3分,共30分)1、B【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;B、有六条对称轴,是轴对称图形,故本选项正确;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误.故选B.2、A【详解】分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.3、A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【详解】∵x2+mxy+1y2=x2+mxy+(2y)2,∴mxy=±2x×2y,解得:m=±1.故选:A.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键.4、C【分析】根据勾股定理逆定理判断即可.【详解】解:如果a2-b2=c2,则a2=b2+c2,则△ABC是直角三角形,且∠A=90°.
故选:C.【点睛】本题考查的是直角三角形的判定定理,判断三角形是否为直角三角形可通过三角形的角、三边的关系进行判断.5、D【分析】根据二次根式有意义的条件即可求出a的取值范围,然后根据二次根式的除法公式和分母有理化化简即可.【详解】解:,即,故选:D.【点睛】此题考查的是二次根式的化简,掌握二次根式有意义的条件、二次根式的除法公式和分母有理化是解题关键.6、C【分析】根据全等三角形的判定方法,对每个选项逐一判断即可得出答案.【详解】A.两条边对应相等,且两条边的夹角也对应相等的两个三角形全等,即当AB=DE,BC=EF时,两条边的夹角应为∠B=∠E,故A选项不能判定△ABC≌△DEF;B.两个角对应相等,且两个角夹的边也对应相等的两个三角形全等,即当∠A=∠D,∠C=∠F时,两个角夹的边应为AC=DF,故B选项不能判定△ABC≌△DEF;.C.由AB=DE,BC=EF,△ABC的周长=△DEF的周长,可知AC=DF,即三边对应相等的两个三角形全等,故C选项能判定△ABC≌△DEF;.D.三角对应相等的两个三角形不一定全等,故D选项不能判定△ABC≌△DEF.故选C.【点睛】本题考查了全等三角形的判定方法.熟练掌握全等三角形的判定方法是解题的关键.7、D【分析】根据分式的基本性质逐一判断即可.【详解】A.当b≠0时,将分式的分子和分母同除以b,可得,故本选项错误;B.根据分式的基本性质,,故本选项错误;C.,故本选项错误;D.,故本选项正确.故选D.【点睛】此题考查的是分式的变形,掌握分式的基本性质是解决此题的关键.8、B【分析】先证明∠A=∠D,然后根据全等三角形的判定方法逐项分析即可.【详解】解:如图,延长BA交EF与H.∵AB∥DE,∴∠A=∠1,∵AC∥DF,∴∠D=∠1,∴∠A=∠D.A.在△ABC和△DEF中,∵AB=DE,∠A=∠D,AC=DF,∴△ABC≌△DEF(SAS),故A不符合题意;B.EF=BC,无法证明△ABC≌△DEF(ASS);故B符合题意;C.在△ABC和△DEF中,∵∠B=∠E,∠A=∠D,AC=DF,∴△ABC≌△DEF(AAS),故C不符合题意;D.∵EF∥BC,∴∠B=∠2,∵AB∥DE,∴∠E=∠2,∴∠B=∠E,在△ABC和△DEF中,∵∠B=∠E,∠A=∠D,AC=DF,∴△ABC≌△DEF(AAD),故D不符合题意;故选B.【点睛】本题主要考查了平行线的性质,以及全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.注意:AAA、SSA不能判定两个三角形全等.9、D【分析】直接利用命题与定理的定义以及三角形的外角的性质分析得出答案.【详解】解:A、命题不一定都是定理,故此选项错误;B、三角形的一个外角大于它不相邻的内角,故此选项错误;C、三角形的外角和等于360°,故此选项错误;D、公理和定理都是真命题,正确.故选:D.【点睛】此题主要考查了三角形外角的性质以及命题与定理,正确掌握相关定义是解题关键.10、C【分析】根据非负数之和等于0,则每一个非负数都为0,求出a,b,c的值,即可判断三角形的形状.【详解】∵,,且∴,解得∴,又,∴△ABC不是直角三角形,∴△ABC为等腰三角形故选C.【点睛】本题考查了非负数的性质与等腰三角形的判定,熟练掌握二次根式与绝对值的非负性是解题的关键.二、填空题(每小题3分,共24分)11、【分析】原式利用多项式乘以多项式法则计算即可得到结果.【详解】.故答案为:.【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.12、60°【分析】由等边三角形的性质得出AB=CA,∠BAD=∠ACE=60°,由SAS即可证明△ABD≌△CAE,得到∠ABD=∠CAE,利用外角∠BPE=∠BAP+∠ABD,即可解答.【详解】解:∵△ABC是等边三角形,∴AB=CA,∠BAD=∠ACE=60°,在△ABD和△CAE中,,∴△ABD≌△CAE(SAS),∴∠ABD=∠CAE,∵∠BPE=∠BAP+∠ABD,∴∠BPE=∠BAP+∠CAE=∠BAC=60°.故答案为:60°.【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.13、b>c>a.【分析】由图1,根据折叠得DE是△ABC的中位线,可得出DE的长,即a的长;由图2,同理可得MN是△ABC的中位线,得出MN的长,即b的长;由图3,根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即c的长.【详解】解:第一次折叠如图1,折痕为DE,由折叠得:AE=EC=AC=×4=2,DE⊥AC∵∠ACB=90°∴DE∥BC∴a=DE=BC=×3=,第二次折叠如图2,折痕为MN,由折叠得:BN=NC=BC=×3=,MN⊥BC∵∠ACB=90°∴MN∥AC∴b=MN=AC=×4=2,第三次折叠如图3,折痕为GH,由勾股定理得:AB==5由折叠得:AG=BG=AB=,GH⊥AB∴∠AGH=90°∵∠A=∠A,∠AGH=∠ACB,∴△ACB∽△AGH∴,即,∴GH=,即c=,∵2>>,∴b>c>a,故答案为:b>c>a.【点睛】本题考查了折叠的问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.本题的关键是明确折痕是所折线段的垂直平分线,准确找出中位线,利用中位线的性质得出对应折痕的长,没有中位线的可以考虑用三角形相似来解决.14、1【分析】根据题意,设BN=x,由折叠DN=AN=9-x,在利用勾股定理列方程解出x,就求出BN的长.【详解】∵D是CB中点,BC=6∴BD=3设BN=x,AN=9-x,由折叠,DN=AN=9-x,在中,,,解得x=1∴BN=1.故答案是:1.【点睛】本题考查折叠的性质和勾股定理,关键是利用方程思想设边长,然后用勾股定理列方程解未知数,求边长.15、5【解析】试题分析:∵由得,∴.16、①③【分析】①由已知条件证明DAB≌EAC即可;②由①可得ABD=ACE<45°,DCB>45°;③由ECB+EBC=ABD+ECB+ABC=ACE+ECB+ABC=45°+45°=90°可判断③;④由BE1=BC1-EC1=1AB1-(CD1﹣DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1可判断④.【详解】解:∵DAE=BAC=90°,∴DAB=EAC,∵AD=AE,AB=AC,∴AED=ADE=ABC=ACB=45°,∵在DAB和EAC中,,∴DAB≌EAC,∴BD=CE,ABD=ECA,故①正确;由①可得ABD=ACE<45°,DCB>45°故②错误;∵ECB+EBC=ABD+ECB+ABC=ACE+ECB+ABC=45°+45°=90°,∴CEB=90°,即CE⊥BD,故③正确;∴BE1=BC1-EC1=1AB1-(CD1﹣DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.∴BE1=1(AD1+AB1)-CD1,故④错误.故答案为:①③.【点睛】本题主要考查全等三角形判定与性质以及勾股定理的应用,熟记全等三角形的判定与性质定理以及勾股定理公式是解题关键.17、4.【分析】由角平分线的性质可证明CE=DE,可得AE+DE=AC,再由勾股定理求出AC的长即可.【详解】∵平分于点,∴DE=CE,∴AE+DE=AE+EC=AC,在Rt△ABC中,,∴AC=,∴AE+DE=4,故答案为:4.【点睛】本题主要考查了角平分线的性质以及勾股定理,熟练掌握蜀道难突然发觉解答此题的关键.18、1【分析】画出图形,设菱形的边长为x,根据勾股定理求出周长即可.【详解】当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,
在Rt△ABC中,
由勾股定理:x2=(8-x)2+22,
解得:x=,∴4x=1,
即菱形的最大周长为1cm.
故答案是:1.【点睛】解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.三、解答题(共66分)19、量出DE的长就等于AB的长,理由详见解析.【分析】利用“边角边”证明△ABC和△DEC全等,再根据全等三角形对应边相等解答.【详解】量出DE的长就等于AB的长,理由如下:在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴AB=DE.【点睛】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.20、(1);(2)最多可免费携带行李的质量为10kg;;(3)【分析】(1)由题意可设,然后任意选两个x、y的值代入求解即可;(2)由(1)可直接进行求解;(3)由(1)及题意可直接进行求解.【详解】解:(1)由题意设,根据表格可把当x=25时,y=3和当x=35时,y=5代入得:,解得:,∴y与x的关系式为:;(2)由(1)可得:,∴当y=0时,,解得:,∴最多可免费携带行李的质量为10kg;(3)由(1)可得当时,则有:,解得:;故答案为.【点睛】本题主要考查一次函数的实际应用,熟练掌握一次函数的应用是解题的关键.21、(1)购进甲型号口罩300袋,购进乙种型号口罩200袋;(2)每袋乙种型号的口罩最多打9折【解析】(1)设小明爸爸的商店购进甲种型号口罩x袋,乙种型号口罩y袋,根据“小明的爸爸用12000元购进甲、乙两种型号的口罩,销售完后共获利2700元”列出方程组,解方程组即可求解;(2)设每袋乙种型号的口罩打m折,根据“两种型号的口罩全部售完,要使第二次销售活动获利不少于2460元”列出不等式,解不等式即可求解.【详解】(1)设小明爸爸的商店购进甲种型号口罩x袋,乙种型号口罩y袋,根据题意可得,,解得:,答:该商店购进甲种型号口罩300袋,乙种型号口罩200袋;(2)设每袋乙种型号的口罩打m折,由题意可得,300×5+400(0.1m×36-30)≥2460,解得:m≥9,答:每袋乙种型号的口罩最多打9折.【点睛】本题考查了二元一次方程组的应用及一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系,列出方程组或不等式求解.22、(1)80;9;400;(2)货车出发后,轿车与货车在距甲地处相遇;(3);(4)货车在乙地停留.【分析】(1)根据函数图象中的数据可知货车2小时行驶的路程是160km,从而可以求得货车的速度,a=11-2,甲乙两地的距离可以用160+120×(160÷货车的速度)计算即可;
(2)根据题意和图象中的数据,可以写出点D表示的实际意义;
(3)根据函数图象中的数据可以求得y2与x的函数表达式,并求出b的值;
(4)根据题意和函数图象中的数据可以得到货车在乙地停留的时间.【详解】(1)货车的速度为:160÷2=80(km/h),
a=11-2=9,
甲乙两地相距:160+120×(160÷80)=160+120×2=160+240=400(km),
故答案为:80,9,400;
(2)图中点D表示的实际意义是:货车出发9小时时,与轿车在距离甲地160km处相遇,
故答案为:货车出发9小时时,与轿车在距离甲地160km处相遇;
(3)设y2与x的函数关系式为y2=kx+c,∴,得,
即y2与x的函数关系式为y2=120x-920,当时,
∴;
(4)货车在乙地停留的时间是:(h),
答:货车在乙地停留的时间是1h.【点睛】本题考查了从函数图象中获取信息,一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.23、(1);(2)或5或【分析】(1)根据四边形ABCD是长方形,可得DC=AB=6,根据长方形的性质和勾股定理可得AC的长,作于点,根据三角形的面积可求出DQ的长;(2)由(1)得AC的长,分三种情况进行讨论:①当时;②当时;③当时,计算即可得出AP的长.【详解】(1)长方形中,,如图,作于点,(2)要使是等腰三角形①当时,②当时,③当时,如(1)中图,于点,由(1)知,,综上,若是等腰三角形,或5或.【点睛】本题考查了矩形的性质,勾股定理,等腰三角形的性质.解题的关键要注意分情况讨论.24、(1)真;(2);(3)①证明见解析;②或.【分析】(1)设等边三角形的边长为a,则a2+a2=2a2,即可得出结论;
(2)由勾股定理得出a2+b2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 赣州师范高等专科学校《论文规范教育》2023-2024学年第一学期期末试卷
- 《急诊科护理查房》课件
- 三年级数学上册六平移旋转和轴对称平移和旋转说课稿苏教版
- 2021一建考试《建筑工程实务》题库试卷考点题库及参考答案解析四
- 《论坛推广》课件
- 小学生生物安全课件下载
- 一元一次讨论移项-课件
- 火灾现场安全课件
- 《激光在眼科的运用》课件
- 小学生武警教育课件
- 设立数字经济产业园公司商业计划书
- 部编版小学道德与法治五年级上册单元复习课件(全册)
- 仙桃市仙桃市2023-2024学年七年级上学期期末数学检测卷(含答案)
- 智慧农场整体建设实施方案
- 航空公司个人年终总结(共12篇)
- 产品供货方案、售后服务方案
- 苏教版小学数学六年级上册第4单元解决问题的策略重难点练习【含答案】
- 安徽省池州市贵池区2023-2024学年高二数学第一学期期末综合测试模拟试题含解析
- 干湿球温度湿度换算表
- 儿童英文自我介绍演讲PPT模板(完整版)
- 新加坡双语教育发展史
评论
0/150
提交评论