云南师范大实验中学2025届数学八年级第一学期期末质量跟踪监视模拟试题含解析_第1页
云南师范大实验中学2025届数学八年级第一学期期末质量跟踪监视模拟试题含解析_第2页
云南师范大实验中学2025届数学八年级第一学期期末质量跟踪监视模拟试题含解析_第3页
云南师范大实验中学2025届数学八年级第一学期期末质量跟踪监视模拟试题含解析_第4页
云南师范大实验中学2025届数学八年级第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南师范大实验中学2025届数学八年级第一学期期末质量跟踪监视模拟试题质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列代数式,,,,,,,,中,分式有()个.A.5 B.4 C.3 D.22.若分式的值为零,则x的值是()A.2或-2 B.2 C.-2 D.43.如图,,再添加下列条件仍不能判定的是()A. B. C. D.4.四舍五入得到的近似数6.49万,精确到()A.万位 B.百分位 C.百位 D.千位5.若(x+m)(x﹣8)中不含x的一次项,则m的值为()A.8 B.﹣8 C.0 D.8或﹣86.下列各式中,从左到右的变形是因式分解的是()A.3x+3y+1=3(x+y)+1 B.a2﹣2a+1=(a﹣1)2C.(m+n)(m﹣n)=m2﹣n2 D.x(x﹣y)=x2﹣xy7.一个三角形的两边长分别是和,则第三边的长可能是()A. B. C. D.8.下列各式中,正确的是()A.=±4 B.±=4 C. D.9.正比例函数y=kx(k≠0)的图象经过第二、四象限,则一次函数y=x+k的图象大致是()A. B. C. D.10.下列从左到右的变形:;;;其中,正确的是A. B. C. D.二、填空题(每小题3分,共24分)11.小刚准备测量一段河水的深度,他把一根竹竿插到离岸边远的水底,竹竿高出水面,当他把竹竿的顶端拉向岸边时,竹竿和岸边的水面刚好相齐,则河水的深度为_______.12.如图,在△ABC中,AB=3,AC=4,则BC边上的中线AD的长x取值范围是___;13.若点A(a,1)与点B(﹣3,b)关于x轴对称,则ab=____.14.在RtΔABC中,AB=3cm,BC=4cm,则AC边的长为_____.15.在平面直角坐标系中,点A,B的坐标分别为(3,5),(3,7),直线y=2x+b与线段AB有公共点,则b的取值范围是______.16.若,则可取的值为__________.17.如图,在等边三角形中,,点为边的中点,点为边上的任意一点(不与点重合),将沿折叠使点恰好落在等边三角形的边上,则的长为_______cm.18.已知为实数,且,则______.三、解答题(共66分)19.(10分)阅读材料:我们学过一次函数的图象的平移,如:将一次函数的图象沿轴向右平移个单位长度可得到函数的图象,再沿轴向上平移个单位长度,得到函数的图象;如果将一次函数的图象沿轴向左平移个单位长度可得到函数的图象,再沿轴向下平移个单位长度,得到函数的图象.类似地,形如的函数图象的平移也满足此规律.仿照上述平移的规律,解决下列问题:(1)将一次函数的图象沿轴向右平移个单位长度,再沿轴向上平移个单位长度,得到函数________的图象(不用化简);(2)将的函数图象沿y轴向下平移个单位长度,得到函数________________的图象,再沿轴向左平移个单位长度,得到函数_________________的图象(不用化简);(3)函数的图象可看作由的图象经过怎样的平移变换得到?20.(6分)王华由,,,,,这些算式发现:任意两个奇数的平方差都是8的倍数(1)请你再写出两个(不同于上面算式)具有上述规律的算式;(2)请你用含字母的代数式概括王华发现的这个规律(提示:可以使用多个字母);(3)证明这个规律的正确性.21.(6分)如图,在中,.将向上翻折,使点落在上,记为点,折痕为,再将以为对称轴翻折至,连接.(1)证明:(2)猜想四边形的形状并证明.22.(8分)解不等式:(1)不等式(2)解不等式组:并将,把解集表示在数轴上23.(8分)(1)如图中,已知∠MAN=120°,AC平分∠MAN.∠ABC=∠ADC=90°,则能得如下两个结论:①DC=BC;②AD+AB=AC.请你证明结论②;(2)如图中,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.24.(8分)暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.25.(10分)如图,一次函数y1=1x﹣1的图象与y轴交于点A,一次函数y1的图象与y轴交于点B(0,6),点C为两函数图象交点,且点C的横坐标为1.(1)求一次函数y1的函数解析式;(1)求△ABC的面积;(3)问:在坐标轴上,是否存在一点P,使得S△ACP=1S△ABC,请直接写出点P的坐标.26.(10分)阅读材料,并回答问题:在一个含有多个字母的式子中,若任意交换两个字母的位置,式子的值不变,则这样的式子叫做对称式.例如:等都是对称式.(1)在下列式子中,属于对称式的序号是_______;①②③④.(2)若,用表示,并判断的表达式是否为对称式;当时,求对称式的值.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据分式的定义逐个判断即可.形如(A、B是整式,B中含有字母)的式子叫做分式.【详解】解:分式有:,,﹣,,,共5个,故选:A.【点睛】本题考查的知识点是分式的定义,熟记定义是解此题的关键.2、C【分析】试题分析:当分式的分子为零,分母不为零时,则分式的值为零.【详解】x2-4=0,x=±2,同时分母不为0,∴x=﹣23、A【分析】根据AB∥CD,可得∠BAC=∠ACD,再加上公共边AC=AC,然后结合全等三角形的判定定理进行分析即可.【详解】:∵AB∥CD,∴∠BAC=∠ACD,A、添加BC=AD不能判定△ABC≌△CDA,故此选项符合题意;B、添加AB=CD可利用SAS判定△ABC≌△CDA,故此选项不合题意;C、添加AD∥BC可得∠DAC=∠BCD,可利用ASA判定△ABC≌△CDA,故此选项不合题意;D、添加∠B=∠D可利用AAS判定△ABC≌△CDA,故此选项不合题意;故答案为:A.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.4、C【分析】找出最后一位上的数字所在的数位即可得出答案.【详解】近似数6.49万中最后一位数字9落在了百位上,所以近似数6.49万精确到百位,故选C.【点睛】本题考查了精确度问题,熟知近似数最后一位数字所在的位置就是精确度是解题的关键.5、A【解析】试题分析:根据整式的乘法可得(x+m)(x-8)=x2+(m-8)x-8m,由于不含x项,则可知m-8=0,解得m=8.故选A6、B【分析】根据因式分解的意义,可得答案.【详解】解:A、没把一个多项式转化成几个整式积的形式,故A错误;B、把一个多项式转化成几个整式积的形式,故B正确;C、是整式的乘法,故C错误;D、是整式的乘法,故D错误;故选:B.【点睛】把多项式化为几个整式的积的形式,即是因式分解7、C【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出第三边的取值范围,即可求解..【详解】设第三边为x,由三角形三条边的关系得1-2<x<1+2,∴2<x<6,∴第三边的长可能是1.故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.8、C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得.【详解】A、,此项错误;B、,此项错误;C、,此项正确;D、,此项错误;故选:C.【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键.9、B【解析】∵正比例函数y=kx(k≠0)的图像经过第二、四象限,∴k<0,∴一次函数y=x+k的图像与y轴交于负半轴,且经过第一、三象限.故选B.10、B【解析】根据分式的基本性质进行计算并作出正确的判断.【详解】①,当a=1时,该等式不成立,故①错误;②,分式的分子、分母同时乘以b,等式仍成立,即,故②正确;③,当c=1时,该等式不成立,故③错误;④,因为x2+1≠1,即分式ab的分子、分母同时乘以(x2+1),等式仍成立,即成立,故④正确;综上所述,正确的②④.故选:B.【点睛】本题考查了分式的基本性质,注意分式的基本性质中分子、分母乘以(或除以)的数或式子一定不是1.二、填空题(每小题3分,共24分)11、米【分析】河水的深、竹竿的长、离岸的距离三者构成直角三角形,作出图形,根据勾股定理即可求解.【详解】如图,在Rt△ABC中,AC=1.5cm.CD=AB-BC=3.5m.

设河深BC=xm,则AB=3.5+x米.

根据勾股定理得出:

∵AC3+BC3=AB3

∴1.53+x3=(x+3.5)3

解得:x=3.

【点睛】本题考查了勾股定理在实际生活中的应用,根据勾股定理可以把求线段的长的问题转化为解方程得问题是解题的关键.12、0.1<x<3.1【解析】延长AD到E,使AD=DE,连接BE,∵AD是△ABC的中线,∴BD=CD,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),∴EB=AC=4,∵AB=3,∴1<AE<7,∴0.1<AD<3.1.故答案为0.1<AD<3.1.13、-【分析】根据坐标点关于坐标轴的对称性特点即可求解.【详解】依题意a=-3,b=-1,∴ab=(-3)-1=-【点睛】此题主要考查坐标点的对称性,解题的关键是熟知点的坐标关于坐标轴的对称点的性质特点.14、5cm或cm【分析】分两种情况考虑:BC为斜边,BC为直角边,利用勾股定理求出AC的长即可.【详解】若BC为直角边,

∵AB=3cm,BC=4cm,

∴AC=(cm),若BC为斜边,

∵AB=3cm,BC=4cm,

∴AC=(cm),综上所述,AC的长为cm或cm.故答案为:cm或cm.【点睛】本题考查了勾股定理的应用,在解答此题时要注意进行分类讨论,不要漏解.15、-1≤b≤1【分析】由一次函数图象上点的坐标特征结合直线与线段有公共点,即可得出关于b的一元一次不等式,解之即可得出b的取值范围.【详解】解:当x=3时,y=2×3+b=6+b,∴若直线y=2x+b与线段AB有公共点,则,解得-1≤b≤1故答案为:-1≤b≤1.【点睛】本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征结合直线与线段有公共点,列出关于b的一元一次不等式是解题的关键.16、或2【分析】直接利用零指数幂的性质以及有理数的乘方运算法则得出答案.【详解】解:∵,

∴当1-3x=2时,x=,原式=()2=1,

当x=2时,原式=11=1.

故答案为:或2.【点睛】本题考查零指数幂的性质以及有理数的乘方运算,正确掌握运算法则是解题关键.17、或【分析】如图1,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边AB上时,于是得到MN⊥AB,BN=BN′,根据等边三角形的性质得到AC=BC,∠ABC=60°,根据线段中点的定义得到BN=BM=,如图2,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边A,C上时,则MN⊥BB′,四边形BMB′N是菱形,根据线段中点的定义即可得到结论.【详解】解:如图1,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边AB上时,则MN⊥AB,BN=BN′,∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=60°,∵点M为边BC的中点,∴BM=BC=AB=,∴BN=BM=,如图2,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边A,C上时,则MN⊥BB′,四边形BMB′N是菱形,∵∠ABC=60°,点M为边BC的中点,∴BN=BM=BC=AB=,,故答案为:或.【点睛】本题考查了轴对称的性质,等边三角形的性质,菱形的判定和性质,分类讨论是解题的关键.18、或.【解析】根据二次根式有意义的条件可求出x、y的值,代入即可得出结论.【详解】∵且,∴,∴,∴或.故答案为:或.【点睛】本题考查了二次根式有意义的条件.解答本题的关键由二次根式有意义的条件求出x、y的值.三、解答题(共66分)19、(1);(2);;(3)先向左平移2个单位长度,再向上平移1个单位长度.【分析】(1)由于把直线平移k值不变,利用“左加右减,上加下减”的规律即可求解;(2)由于把抛物线平移k值不变,利用“左减右加,上加下减”的规律即可求解;(3)利用平移规律写出函数解析式即可.【详解】解:(1)将一次函数的图象沿x轴向右平移3个单位长度,再沿y轴向上平移1个单位长度后,得到一次函数解析式为:;故答案为:;(2)∵的函数图象沿y轴向下平移3个单位长度,∴得到函数:;再沿x轴向左平移1个单位长度,得到函数:;故答案为:;.(3)函数y=x2+2x的图象向左平移两个单位得到:y=(x+2)2+2(x+2),然后将其向上平移一个单位得到:y=(x+2)2+2(x+2)+1=(x+2)2+2x+1.∴先向左平移2个单位长度,再向上平移1个单位长度.【点睛】本题考查图形的平移变换和函数解析式之间的关系.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.20、(1),;(2);(3)见解析.【分析】(1)根据已知算式写出符合题意的答案;(2)利用平方差公式计算,即可得出答案;(3)先把代数式进行分解因式,然后对m、n的值进行讨论分析,即可得到结论成立.【详解】解:(1)根据题意,有:,;∴,;(2)根据题意,得:(m,n,a都是整数且互不相同);(3)证明:==;当m、n同是奇数或偶数时,(m-n)一定是偶数,∴4(m-n)一定是8的倍数;当m、n是一奇一偶时,(m+n+1)一定是偶数,∴4(m+n+1)一定是8的倍数;综上所述,任意两个奇数的平方差都是8的倍数.【点睛】本题考查了因式分解的应用及平方差公式的应用,解题的关键是熟练掌握因式分解的方法进行解题.注意:平方差公式是a2-b2=(a+b)(a-b).21、(1)见解析;(1)四边形ADCF为菱形,证明见解析.【分析】(1)根据翻折的性质,先得出AB=AE,∠AED=90°,再根据AC=1AB,可得出DE垂直平分AC,从而可得出结论;(1)根据折叠的性质以及等边对等角,先求出∠1=∠1=∠3=∠2=30°,从而可得出∠FAB=90°,进而推出AF∥CD,再由边的等量关系,可证明四边形ADCF为菱形.【详解】(1)证明:由轴对称得性质得,∠B=90°=∠AED,AE=AB,∵AC=1AB,∴ED为AC的垂直平分线,∴AD=CD;(1)解:四边形ADCF为菱形.证明如下:∵AD=CD,∴∠1=∠1.由轴对称性得,∠1=∠3,∠1=∠2.∵∠B=90°,∴∠1=∠1=∠3=∠2=30°,∴∠FAB=90°,∴AF∥CD,AF=AD=CD,∴四边形ADCF为菱形.【点睛】本题主要考查轴对称的性质,垂直平分线的性质,菱形的判定等知识,掌握相关性质与判定方法是解题的关键.22、(1);(2),作图见解析【分析】(1)按照解一元一次不等式的基本步骤求解即可;(2)先分别求解不等式,再在数轴上画出对应解集,最终写出解集即可【详解】(1)(2),由①解得:,由②解得:,即:,在数轴上表示如图:∴不等式组的解集为:【点睛】本题考查不等式与不等式组的求解,及在数轴上表示解集,准确求解不等式,并注意数轴上表示解集的细节是解题关键23、(1)证明见解析(2)成立,证明见解析.【分析】(1)根据角平分线的性质可得∠DAC=∠BAC=60°,又已知∠ABC=∠ADC=90°,所以∠DCA=∠BCA=30°,根据直角三角形的性质可证AC=2AD,AC=2AB,所以AD+AB=AC.(2)根据已知条件可在AN上截取AE=AC,连接CE,根据AAS可证△ADC≌△EBC,得到DC=BC,DA=BE,所以AD+AB=AB+BE=AE,即AD+AB=AC.【详解】(1)∵∠MAN=120°,AC平分∠MAN.∴∠DAC=∠BAC=60°,∵∠ABC=∠ADC=90°,∴∠DCA=∠BCA=30°,在Rt△ACD,Rt△ACB中,∠DCA=30°∠BCA=30°∴AC=2AD,AC=2AB,∴2AD=2AB∴AD=AB∴AD+AB=AC.(2)(1)中的结论①DC=BC;②AD+AB=AC都成立,理由:如图,在AN上截取AE=AC,连结CE,∵∠BAC=60°,∴△CAE为等边三角形,∴AC=CE,∠AEC=60°,∵∠DAC=60°,∴∠DAC=∠AEC,∵∠ABC+∠ADC=180°,∠ABC+∠EBC=180°,∴∠ADC=∠EBC,∴,∴DC=BC,DA=BE,∴AD+AB=AB+BE=AE,∴AD+AB=AC.24、(1)设y=kx+b,当x=0时,y=2,当x=150时,y=1.∴150k+b=1b="2"解得∴y=x+2.(2)当x=400时,y=×400+2=5>3.∴他们能在汽车报警前回到家.【解析】(1)先设出一次函数关系式,再根据待定系数法即可求得函数关系式;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论