![2025届陕西省延安市名校数学八上期末综合测试模拟试题含解析_第1页](http://file4.renrendoc.com/view14/M01/26/0D/wKhkGWbwz1aAUAzfAAGePXaRHHs832.jpg)
![2025届陕西省延安市名校数学八上期末综合测试模拟试题含解析_第2页](http://file4.renrendoc.com/view14/M01/26/0D/wKhkGWbwz1aAUAzfAAGePXaRHHs8322.jpg)
![2025届陕西省延安市名校数学八上期末综合测试模拟试题含解析_第3页](http://file4.renrendoc.com/view14/M01/26/0D/wKhkGWbwz1aAUAzfAAGePXaRHHs8323.jpg)
![2025届陕西省延安市名校数学八上期末综合测试模拟试题含解析_第4页](http://file4.renrendoc.com/view14/M01/26/0D/wKhkGWbwz1aAUAzfAAGePXaRHHs8324.jpg)
![2025届陕西省延安市名校数学八上期末综合测试模拟试题含解析_第5页](http://file4.renrendoc.com/view14/M01/26/0D/wKhkGWbwz1aAUAzfAAGePXaRHHs8325.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届陕西省延安市名校数学八上期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.现用张铁皮做盒子,每张铁皮做个盒身或做个盒底,而一个盒身与两个盒底配成一个盒子,设用张铁皮做盒身,张铁皮做盒底,则可列方程组为()A. B.C. D.2.已知:且,则式子:的值为()A. B. C.-1 D.23.下列关于的叙述中,错误的是()A.面积为5的正方形边长是 B.5的平方根是C.在数轴上可以找到表示的点 D.的整数部分是24.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.
B.
C.
D.5.如图,AB∥DE,∠CED=31°,∠ABC=70°.∠C的度数是()A.28° B.31° C.39° D.42°6.下列二次根式是最简二次根式的是()A. B. C. D.以上都不是7.在,,,,,,等五个数中,无理数有()A.个 B.个 C.个 D.个8.今年月日至月日,我市某学校组织八年级学生走进相距约的“济源市示范性综合实践基地”,开展“拓展、体验、成长”综合实践活动.出发时,一部分服务人员乘坐小轿车,八年级师生乘坐旅游大巴同时从学校出发,当小轿车到达目的地时,旅游大巴行走.已知旅游大巴比小轿车每小时少走,请分别求出旅游大巴和小轿车的速度.解:设旅游大巴的速度是,根据题意,下面列出的方程正确的是()A. B. C. D.9.下列调查适合抽样调查的是()A.审核书稿中的错别字 B.企业招聘,对应聘人员进行面试C.了解八名同学的视力情况 D.调查某批次汽车的抗撞击能力10.如图,AD是等边三角形ABC的中线,AE=AD,则∠EDC=()度.A.30 B.20 C.25 D.15二、填空题(每小题3分,共24分)11.如图,直线:与直线:相交于点,则关于x的不等式的解集为______.12.已知△ABC是边长为6的等边三角形,过点B作AC的垂线l,垂足为D,点P为直线l上的点,作点A关于CP的对称点Q,当△ABQ是等腰三角形时,PD的长度为___________13.小华将升旗的绳子从旗杆的顶端拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆的处,发现此时绳子末端距离地面,则旗杆的高度为______.14.若mn=2,则m+3nm-n15.在平面直角坐标系中,、,点是轴上一点,且,则点的坐标是__________.16.点(2,﹣1)所在的象限是第____象限.17.若x2+mx+25是完全平方式,则m=___________。18.比较大小:-1______(填“>”、“=”或“<”).三、解答题(共66分)19.(10分)在平面直角坐标系中,已知点A的坐标为(0,15),点B的坐标为(20,0).(1)求直线AB的表达式;(2)若点C的坐标为(m,9),且S△ABC=30,求m的值;(3)若点D的坐标为(12,0),在射线AB上有两点P,Q,使得以O,P,Q为顶点的三角形与△OPD全等,求点P的坐标.20.(6分)共有1500kg化工原料,由A,B两种机器人同时搬运,其中,A型机器人比B型机器每小时多搬运30kg,A型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等,问需要多长时间才能运完?21.(6分)一次函数的图象经过点和两点.求出该一次函数的表达式;画出该一次函数的图象(不写做法);判断点是否在这个函数的图象上;求出该函数图象与坐标轴围成的三角形面积.22.(8分)如图,中,,,.(1)用直尺和圆规在边上找一点,使到的距离等于.(2)是的________线.(3)计算(1)中线段的长.23.(8分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图1,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S1.则S1与S1的数量关系是.(1)猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长24.(8分)(1)计算:(2)求x的值:25.(10分)已知为原点,点及在第一象限的动点,且,设的面积为.(1)求关于的函数解析式;(2)求的取值范围;(3)当时,求点坐标;(4)画出函数的图象.26.(10分)如图1和2,在20×20的等距网格(每格的宽和高均是1个单位长)中,Rt△ABC从点A与点M重合的位置开始,以每秒1个单位长的速度先向下平移,当BC边与网的底部重合时,继续同样的速度向右平移,当点C与点P重合时,Rt△ABC停止移动.设运动时间为x秒,△QAC的面积为y.(1)如图1,当Rt△ABC向下平移到Rt△A1B1C1的位置时,请你在网格中画出Rt△A1B1C1关于直线QN成轴对称的图形;(2)如图2,在Rt△ABC向下平移的过程中,请你求出y与x的函数关系式,并说明当x分别取何值时,y取得最大值和最小值?最大值和最小值分别是多少?(3)在Rt△ABC向右平移的过程中,请你说明当x取何值时,y取得最大值和最小值?最大值和最值分别是多少?为什么?(说明:在(3)中,将视你解答方法的创新程度,给予1~4分的加分)
参考答案一、选择题(每小题3分,共30分)1、A【分析】此题中的等量关系有:①共有190张铁皮;②做的盒底数等于盒身数的2倍时才能正好配套.由此可得答案.【详解】解:根据共有190张铁皮,得方程x+y=190;根据做的盒底数等于盒身数的2倍时才能正好配套,得方程2×8x=22y.列方程组为.故选:A.【点睛】本题考查的是二元一次方程组的应用,找准等量关系是解应用题的关键.2、A【分析】先通过约分将已知条件的分式方程化为整式方程并求解,再变形要求的整式,最后代入具体值计算即得.【详解】解:∵∴∴∴∴经检验得是分式方程的解.∵∴∴故选:A.【点睛】本题考查分式的基本性质及整式的乘除法运算,熟练掌握完全平方公式是求解关键,计算过程中为使得计算简便应该先变形要求的整式.3、B【分析】根据正方形面积计算方法对A进行判断;根据平方根的性质对B进行判断;根据数轴上的点与实数一一对应即可判断C;根据,可得出可判断出D是否正确.【详解】A.面积为5的正方形边长是,说法正确,故A不符合题意B.5的平方根是,故B错误,符合题意C.在数轴上可以找到表示的点,数轴上的点与实数一一对应,故C正确,不符合题意D.∵,∴,整数部分是2,故D正确,不符合题意故选:B【点睛】本题考查了正方形的性质、平方根的性质、数轴的特点、有理数的大小判断等知识.4、A【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【详解】解:连接AM,
∵AB=AC,点M为BC中点,
∴AM⊥CM(三线合一),BM=CM,
∵AB=AC=5,BC=6,
∴BM=CM=3,
在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,
又S△AMC=MN•AC=AM•MC,∴MN==.
故选A.【点睛】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.5、C【分析】先根据平行线的性质求出∠CFD的度数,再根据三角形外角的性质即可得出结论.【详解】解:∵AB∥DE,
∴∠CFD=∠ABC=70°,∵∠CFD=∠CED+∠C,
∴∠C=∠CFD-∠CED=70°-31°=39°.
故选:C.【点睛】本题考查了平行线的性质以及三角形的外角的性质,熟练掌握相关的知识是解题的关键.6、C【分析】根据最简二次根式的定义分别进行判断,即可得出结论.【详解】解:A.,故此选项错误;B.,故此选项错误;C.是最简二次根式,故此选项正确.故选:C.【点睛】本题主要考查最简二次根式,掌握最简二次根式的定义是解答此题的关键.7、C【分析】根据无理数的三种形式:①开方开不尽的数;②无限不循环小数;③含有的数.【详解】解:是分数,属于有理数;=-3,开方可以开尽,属于有理数;0是整数,属于有理数;开方开不尽,属于无理数;含有,属于无理数;是无限不循环小数,属于无理数.所以有三个无理数.故选C.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数;②无限不循环小数;③含有的数.8、A【分析】由题意根据所设未知数找出等量关系建立分式方程,即可判断选项.【详解】解:由题意可知利用时间等于路程除以速度和时间等量关系建立方程为:.故选:A.【点睛】本题考查分式方程的实际应用,利用时间等于路程除以速度建立等量关系是解题的关键.9、D【分析】根据“抽样调查”和“全面调查”各自的特点结合各选项中的实际问题分析解答即可.【详解】A选项中,“审核书稿中的错别字”适合使用“全面调查”;B选项中,“企业招聘,对应聘人员进行面试”适合使用“全面调查”;C选项中,“了解八名同学的视力情况”适合使用“全面调查”;D选项中,“调查某批次汽车的抗撞击能力”适合使用“抽样调查”.故选D.【点睛】熟知“抽样调查和全面调查各自的特点和适用范围”是解答本题的关键.10、D【详解】∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°,∵AD是△ABC的中线,∴∠DAC=∠BAC=30°,AD⊥BC,∴∠ADC=90°,∵AE=AD,∴∠ADE=∠AED===75°,∴∠EDC=∠ADC−∠ADE=90°−75°=15°.故选D.【点睛】此题考查了等边三角形的性质、等腰三角形的性质及三角形的内角和定理的应用.解题的关键是注意三线合一与等边对等角的性质的应用,注意数形结合思想的应用.二、填空题(每小题3分,共24分)11、x≥1.【分析】把点P坐标代入y=x+1中,求得两直线交点坐标,然后根据图像求解.【详解】解:∵与直线:相交于点,∴把y=2代入y=x+1中,解得x=1,
∴点P的坐标为(1,2);
由图可知,x≥1时,.故答案为:x≥1.【点睛】本题考查了一次函数与一元一次不等式,待定系数法求一次函数解析式,联立两直线解析式求交点坐标的方法,求一次函数与一元一次不等式关键在于准确识图,确定出两函数图象的对应的函数值的大小.12、、、或【分析】先根据题意作图,再分①当②当③当④当时四种情况根据等边三角形的性质及对称性分别求解.【详解】∵点A、Q关于CP对称,∴CA=CQ,∴Q在以C为圆心,CA长为半径的圆上∵△ABQ是等腰三角形,∴Q也在分别以A、B为圆心,AB长为半径的两个圆上和AB的中垂线上,如图①,这样的点Q有4个。(1)当时,如图②,过点做∵点A、Q关于CP对称,∴,又∵,∴,∴∵∠OCD=30°,BD⊥AC∴,,∴∴∴(2)当时,如图③同理可得,∴∴(3)当时,如图④是等边三角形,,∴(4)当时,如图⑤是等边三角形,点与点B重合,∴故填:、、或【点睛】此题主要考查等边三角形的性质及对称性的应用,解题的关键是熟知等边三角形的性质及对称性,再根据题意分情况讨论.13、1【分析】过点C作CD⊥AB于点D,设旗杆的高度为xm,在中利用勾股定理即可得出答案.【详解】如图,过点C作CD⊥AB于点D,则设旗杆的高度为xm,则在中,解得即旗杆的高度为1m故答案为:1.【点睛】本题主要考查勾股定理,掌握勾股定理的内容,构造出直角三角形是解题的关键.14、1.【解析】将m=2n代入原式中进行计算即可.【详解】解:由题意可得m=2n,则原式=2n+3n2n-n故答案为:1.【点睛】本题考查了分式的化简求值.15、(,0)【分析】画图,设点的坐标是(x,0),因为PA=OB,根据勾股定理可得:AC2+PC2=BD2+PD2.【详解】已知如图所示;设点的坐标是(x,0),因为PA=OB根据勾股定理可得:AC2+PC2=BD2+PD2所以32+(x+2)2=42+(4-x)2解得所以点的坐标是(,0)故答案为:(,0)【点睛】考核知识点:勾股定理.数形结合,根据勾股定理建立方程是关键.16、四.【分析】根据点在四个象限内的坐标特点解答即可.【详解】∵点的横坐标大于0,纵坐标小于0∴点(2,﹣1)所在的象限是第四象限.故答案为:四.【点睛】本题主要考查了四个象限的点的坐标的特征,熟练掌握,即可解题.17、±10【解析】试题分析:因为符合形式的多项式是完全平方式,所以mx=,所以m=.考点:完全平方式.18、<【解析】首先求出-1的值是多少;然后根据实数大小比较的方法判断即可.【详解】解:-1=2-1=1,∵1<,∴-1<.故答案为:<.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.三、解答题(共66分)19、(1);(2)m=4或m=12;(3)P1(12,6),P2(4,12),P3(36,-12)【分析】(1)运用待定系数法求解即可;(2)结合C的坐标,表示出三角形ABC的面积,分类求解即可;(3)针对P的位置进行分类讨论即可.【详解】(1)∵点A(0,15)在直线AB上,故可设直线AB的表达式为y=kx+15又∵点B(20,0)在直线AB上∴20k+15=0,∴k=,∴直线AB的表达为;(2)过C作CM∥x轴交AB于M∵点C的坐标为(m,9)∴点M的纵坐标为9,当y=9时,x+15=9,解得x=8,∴M(8,9),∴CM=|m-8|,∴S△ABC=S△AMC+S△BMC=CM·(yA-yM)+CM·(yM-yB)=CM·OA=|m-8|∵S△ABC=30,∴|m-8|=30,解得m=4或m=12;(3)①当点P在线段AB上时,(i)若点P在B,Q之间,当OQ=OD=12,且∠POQ=∠POD时,△OPQ≌△OPD,∵OA=15,OB=20,∴AB==25,设△AOB中AB边上的高为h,则AB·h=OA·OB,∴h=12,∴OQ⊥AB,∴PD⊥OB,∴点P的横坐标为12,当x=12时,y=x+15=6,∴P1(12,6),(ii)若点P在A,Q之间,当PQ=OD=12,且∠OPQ=∠POD时,有△POQ≌△OPD,则BP=OB=20,∴BP:AB=20:25=4:5,∴S△POB=S△AOB,作PH⊥OB于H,则S△POB=OB·PH,∴OB·PH=×OB·OA,∴PH=OA=×15=12,当y=12时,x+15=12,解得x=4,∴P2(4,12),②当点P在AB的延长线上时,(i)若点Q在B,P之间,且PQ=OD,∠OPQ=∠POD时,△POQ≌△OPD,作OM⊥AB于M,PN⊥OB于N,则PN=OM=12,∴点P的纵坐标为-12,当y=-12时,x+15=-12,解得x=36,∴P3(36,-12),(ii)若点Q在BP的延长线上或BP的反向延长线上,都不存在满足条件的P,Q两点.综上所述,满足条件的点P为P1(12,6),P2(4,12),P3(36,-12).【点睛】本题考查待定系数法求解析式,坐标与图形,全等三角形的性质等,熟练理解全等三角形的性质并灵活对问题进行分类讨论是解题关键.20、两种机器人需要10小时搬运完成【分析】先设两种机器人需要x小时搬运完成,然后根据工作效率=工作总量÷工作时间,结合A型机器人比B型机器每小时多搬运30kg,得出方程并且进行解方程即可.【详解】解:设两种机器人需要x小时搬运完成,∵900kg+600kg=1500kg,∴A型机器人需要搬运900kg,B型机器人需要搬运600kg.依题意,得:=30,解得:x=10,经检验,x=10是原方程的解,且符合题意.答:两种机器人需要10小时搬运完成.【点睛】本题主要考察分式方程的实际应用,根据题意找出等量关系,正确列出分式方程是解题的关键.21、;画图见解析;点不在这个函数的图象上;函数图象与坐标轴围成的三角形面积为【分析】(1)直接运用待定系数法求解即可;(2)采用描点、连线的步骤即可解答;(3)将点代入解析式,看解析式是否成立即可;(4)先求出直线与坐标轴交点到原点的距离,然后运用三角形面积公式解答即可.【详解】解:设一次函数的解析式为一次函数的图象经过点和两点解得∴一次函数解析式为;的图象如图所示:由知,一次函数的表达式为将代入此函数表达式中得不在这个函数的图象上;由知,一次函数的表达式为令则令则该函数图象与坐标轴围成的三角形面积为.【点睛】本题主要考查了待定系数法求一次函数的解析式、一次函数图象上点的坐标特征、一次函数的图象以及三角形的面积的求法等知识点,掌握运用待定系数法求函数解析式是解答本题的关键.22、(1)画图见解析;(2)平分;(1)1.【分析】(1)作∠A的角平分线,以点A为圆心,任意半径画弧,再分别以交点为圆心,大于交点线段长度一半为半径画弧,将交点和点A连接,与BC的交点为点D,根据角平分线的性质即可得到,到的距离等于;(2)根据(1)可得,是平分线;(1)设,作于,则,因为直角三角形DEB,勾股定理列出方程即可求出答案.【详解】解:(1)利用角平分线的性质可得,角平分线的点到角两边距离相等,即作的角平分线,与的交点即为点.如图:(2)由(1)可得是的平分线.故填平分;(1)设,作于,则,,,,,,,,,即的长为.【点睛】本题主要考查了尺规作图,熟练角平分线的画法和性质以及勾股定理是解决本题的关键.23、解:(1)①DE∥AC.②.(1)仍然成立,证明见解析;(3)3或2.【详解】(1)①由旋转可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等边三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.②过D作DN⊥AC交AC于点N,过E作EM⊥AC交AC延长线于M,过C作CF⊥AB交AB于点F.由①可知:△ADC是等边三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=1AC.又∵AD=AC∴BD=AC.∵∴.(1)如图,过点D作DM⊥BC于M,过点A作AN⊥CE交EC的延长线于N,
∵△DEC是由△ABC绕点C旋转得到,
∴BC=CE,AC=CD,
∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,
∴∠ACN=∠DCM,
∵在△ACN和△DCM中,,
∴△ACN≌△DCM(AAS),
∴AN=DM,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
即S1=S1;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,
所以BE=DF1,且BE、DF1上的高相等,
此时S△DCF1=S△BDE;
过点D作DF1⊥BD,
∵∠ABC=20°,F1D∥BE,
∴∠F1F1D=∠ABC=20°,
∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,
∴∠F1DF1=∠ABC=20°,
∴△DF1F1是等边三角形,
∴DF1=DF1,过点D作DG⊥BC于G,
∵BD=CD,∠ABC=20°,点D是角平分线上一点,
∴∠DBC=∠DCB=×20°=30°,BG=BC=,
∴BD=3∴∠CDF1=180°-∠BCD=180°-30°=150°,
∠CDF1=320°-150°-20°=150°,
∴∠CDF1=∠CDF1,
∵在△CDF1和△CDF1中,,
∴△CDF1≌△CDF1(SAS),
∴点F1也是所求的点,
∵∠ABC=20°,点D是角平分线上一点,DE∥AB,
∴∠DBC=∠BDE=∠ABD=×20°=30°,
又∵BD=3,
∴BE=×3÷cos30°=3,
∴BF1=3,BF1=BF1+F1F1=3+3=2,
故BF的长为3或2.24、(1);(2)【分析】(1)根据二次根式混合的运算、立方根、以及零指数幂的法则计算即可(2)利用直接开平方法解方程即可【详解】解:(1)原式=;(2)【点睛】本题考查了二次根式的混合运算和解一元二次方程,熟练掌握法则是解题的关键25、(1)S=−4x+48;(2)0<x<12;(3)P(1,3);(4)见解析.【分析】(1)根据三角形的面积公式即可得出结论;(2)根据(1)中函数关系式及点P在第一象限即可得出结论;(3)把S=12代入(1)中函数关系即可得出x的值,进而得出y的值;(4)利用描点法画出函数图象即可.【详解】解:(1)∵A点和P点的坐标分别是(8,0)、(x,y),∴S=×8×y=4y.∵x+y=12,∴y=12−x.∴S=4(12−x)=48−4x,∴所求的函数关系式为:S=−4x+48;(2)由(1)得S=−4x+48>0,解得:x<12;又∵点P在第一象限,∴x>0,综上可得x的取值范围为:0<x<12;(3)∵S=12,∴−4x+48=12,解得x=1.∵x+y=12,∴y=12−1=3,即P(1,3);(4)∵函数解析式为S=−4x+48,∴函数图象是经过点(12,0)(0,48)但不包括这两点的线段.所画图象如图:【点睛】本题考查的是一次函数的应用,根据题意得到函数关系式,并熟知一次函数的图象和性质是解答此题的关键.26、(1)详见解析;(2)y=2x+2(0≤x≤16),当x=0时,y最小=2,当x=16时,y最大=1;(3)当x=32时,y最小=2;当x=16时,y最大=1.【解析】试题分析:(1)如图1,分别作出点A1、B1、C1关于直线QN的对称点A2、B2、C2,在顺次连接这三点即可得到所求三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《中国分类主题表》课件
- 《论文写作技巧》课件
- 《伤仲永对照翻译》课件
- 《英语句子》课件
- 2025至2031年中国弧形锅行业投资前景及策略咨询研究报告
- 2025至2031年中国二相四拍步进电机驱动电路行业投资前景及策略咨询研究报告
- 2025至2030年中国饮料灭菌机自动控制系统数据监测研究报告
- 《绩效执行》课件
- 机器人操作培训资料课件
- 公开课《火烧云》课件
- 大坝安全监测系统验收规范
- 康复医院建筑设计标准
- eras在妇科围手术
- 社会稳定风险评估 投标方案(技术方案)
- 高层建筑火灾扑救面临问题及对策
- JC-T 738-2004水泥强度快速检验方法
- 山东省春季高考技能考试-汽车专业必刷必练题库(600题)
- 膝关节前十字韧带扭伤查房
- 2024建设工程人工材料设备机械数据分类和编码规范
- 仓库高位货架管理制度培训课件
- 工会经费列支范围及工会经费支出范围
评论
0/150
提交评论