版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省农安县前岗中学2025届八年级数学第一学期期末综合测试试题试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一条直线上,连接BD,则下列结论错误的是()A.△ABD≌△ACE B.∠ACE+∠DBC=45°C.BD⊥CE D.∠BAE+∠CAD=200°2.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点,若AB=6,BC=4,△PBC的周长等于()A.10 B.12 C.14 D.163.如图,在平面直角坐标系中,位于第二象限,点的坐标是,先把向右平移3个单位长度得到,再把绕点顺时针旋转得到,则点的对应点的坐标是()A. B. C. D.4.在,-1,,这四个数中,属于负无理数的是()A. B.-1 C. D.5.不等式的解集是()A. B. C. D.6.人字梯中间一般会设计一“拉杆”,这样做的道理是()A.两点之间,线段最短 B.垂线段最短C.两直线平行,内错角相等 D.三角形具有稳定性7.如图,△ABC与△DEF关于y轴对称,已知A,B,E(2,1),则点D的坐标为()A. B. C. D.8.下列计算正确的是()A.()﹣2=b4 B.(﹣a2)﹣2=a4C.00=1 D.(﹣)﹣2=﹣49.下列各式中,从左到右的变形是因式分解的是()A. B.C. D.10.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1、2、3 B.2、3、6 C.4、6、8 D.5、6、1211.已知那么的值等于()A. B. C. D.12.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是().A.1、2、3 B.2、3、4C.3、4、5 D.4、5、6二、填空题(每题4分,共24分)13.若,则m+n=________.14.计算的结果是__________.15.已知,那么以边边长的直角三角形的面积为__________.16.如图,已知点,分别在边和上,点在的内部,平分.若,则的度数为______.17.如图,已知△ABC是等边三角形,D是AC边上的任意一点,点B,C,E在同一条直线上,且CE=CD,则∠E=_____度.18.已知m+2n﹣2=0,则2m•4n的值为_____.三、解答题(共78分)19.(8分)如图,在△BCD中,BC=4,BD=1.(1)求CD的取值范围;(2)若AE∥BD,∠A=11°,∠BDE=121°,求∠C的度数.20.(8分)计算题(1)(2)分解因式:21.(8分)如图1,与都是等腰直角三角形,直角边,在同一条直线上,点、分别是斜边、的中点,点为的中点,连接,,,,.(1)观察猜想:图1中,与的数量关系是______,位置关系是______.(2)探究证明:将图1中的绕着点顺时针旋转(),得到图2,与、分别交于点、,请判断(1)中的结论是否成立,若成立,请证明;若不成立,请说明理由.(3)拓展延伸:把绕点任意旋转,若,,请直接列式求出面积的最大值.22.(10分)_______.23.(10分)如图,在等腰△ABC中,AC=BC,D,E分别为AB,BC上一点,∠CDE=∠A.(1)如图1,若BC=BD,∠ACB=90°,则∠DEC度数为_________°;(2)如图2,若BC=BD,求证:CD=DE;(3)如图3,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE-BE的值.24.(10分)请把下列多项式分解因式:(1)(2)25.(12分)如图,在△ABC中,∠ABC15°,AB,BC2,以AB为直角边向外作等腰直角△BAD,且∠BAD=90°;以BC为斜边向外作等腰直角△BEC,连接DE.(1)按要求补全图形;(2)求DE长;(3)直接写出△ABC的面积.26.如图,两条公路相交于点O,在交角侧有A、B两个村庄,现在要建一加油站P,使得加油站P到两条公路的距离和到A、B两个村庄的距离相等,请画出加油站P的位置.(用尺规作图,保留作图痕迹,不写作法和证明过程)
参考答案一、选择题(每题4分,共48分)1、D【分析】根据SAS即可证明△ABD≌△ACE,再利用全等三角形的性质以及等腰直角三角形的性质即可一一判断.【详解】∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE.在△BAD和△CAE中,∵,∴△BAD≌△CAE(SAS),∴BD=CE,故A正确;∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°.∵△BAD≌△CAE,∴∠ABD=∠ACE,∴∠ACE+∠DBC=45°,故B正确.∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,故C正确.∵∠BAC=∠DAE=90°,∴∠BAE+∠DAC=360°﹣90°﹣90°=180°,故D错误.故选D.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.2、A【分析】先根据等腰三角形的性质得出AC=AB=6,再根据线段垂直平分线的性质得出AP=BP,故AP+PC=AC,由此即可得出结论.【详解】解:∵△ABC中,AB=AC,AB=6,∴AC=6,∵AB的垂直平分线交AC于P点,∴BP+PC=AC,∴△PBC的周长=(BP+PC)+BC=AC+BC=6+4=1.故选:A.【点睛】本题考查的是线段垂直平分线的性质,三角形的周长计算方法,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.3、D【分析】根据要求画出图形,即可解决问题.【详解】解:根据题意,作出图形,如图:观察图象可知:A2(4,2);故选:D.【点睛】本题考查平移变换,旋转变换等知识,解题的关键是正确画出图象,属于中考常考题型.4、D【分析】根据小于零的无理数是负无理数,可得答案.【详解】解:是负无理数,
故选:D.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.5、B【分析】将系数化为1即可,注意不等式两边同除以一个负数,不等号改变方向.【详解】解:系数化为1得:,故选:B.【点睛】此题考查了解一元一次不等式,熟练掌握解一元一次不等式的步骤是解题关键.6、D【分析】根据三角形的稳定性解答即可.【详解】解:人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加其稳定性,故选D.【点睛】此题考查三角形的性质,关键是根据三角形的稳定性解答.7、B【解析】∵△ABC与△DEF关于y轴对称,A(-4,6),∴D(4,6),故选B.8、A【分析】直接利用分式的基本性质、负整数指数幂的性质、零指数幂化简得出答案.【详解】A、,此项正确B、,此项错误C、,此项错误D、,此项错误故选:A.【点睛】本题考查了分式的基本性质、负整数指数幂的性质、零指数幂,熟记各性质与运算法则是解题关键.9、D【分析】根据因式分解的意义(把一个多项式化成几个整式的积的形式,这个过程叫因式分解)逐个判断即可.【详解】解:A、是整式的乘法,不是因式分解,故本选项不符合题意;
B、右边不是积的形式,所以不是因式分解,故本选项不符合题意;
C、是整式的乘法,不是因式分解,故本选项不符合题意;
D、是因式分解,故本选项符合题意;
故选:D.【点睛】本题考查了因式分解的定义,能正确理解因式分解的定义是解此题的关键.10、C【分析】根据三角形的两边之和大于第三边,两边之差小于第三边即可求解.【详解】解:选项A:1+2=3,两边之和等于第三边,故选项A错误;选项B:2+3=5<6,两边之和小于第三边,故选项B错误;选项C:符合三角形的两边之和大于第三边,两边之差小于第三边,故选项C正确;选项D:5+6=11<12,两边之和小于第三边,故选线D错误;故选:C.【点睛】本题考查三角形的三边之间的关系,属于基础题,熟练掌握三角形的三边之间的关系是解决本题的关键.11、B【分析】由同底数幂的乘法的逆运算与幂的乘方的逆运算把变形后代入可得答案.【详解】解:,故选B.【点睛】本题考查的是同底数幂的逆运算与幂的乘方的逆运算,掌握逆运算的法则是解题的关键.12、C【分析】若三根木棒首尾顺次连接,能组成直角三角形,则此三角形的三边应符合勾股定理的逆定理,故只需根据勾股定理的逆定理对四个选项进行逐一解答即可.【详解】解:A、12+22≠32,不能组成直角三角形,故此选项错误;B、22+32≠42,不能组成直角三角形,故此选项错误;C、32+42=52,能组成直角三角形,故此选项正确;D、42+52≠62,不能组成直角三角形,故此选项错误;故选C.【点睛】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.熟记定理是解题的关键.二、填空题(每题4分,共24分)13、1【分析】根据三次根式性质,,说明3m-7和3n+4互为相反数,即即可求解.【详解】∵∴∴故答案为:n【点睛】本题考查了立方根的性质,立方根的值互为相反数,被开方数互为相反数.14、【分析】先算开方,再算乘法,最后算减法即可.【详解】故答案为:.【点睛】本题考查了无理数的混合运算,掌握无理数的混合运算法则是解题的关键.15、6或【分析】根据得出的值,再分情况求出以边边长的直角三角形的面积.【详解】∵∴(1)均为直角边(2)为直角边,为斜边根据勾股定理得另一直角边∴故答案为:6或【点睛】本题考查了三角形的面积问题,掌握勾股定理以及三角形的面积公式是解题的关键.16、1【解析】根据得到AC∥DE,,再根据平分得到,根据平行的性质即可求出的度数.【详解】∵∴AC∥DE,,∵平分∴又AC∥DE∴=故答案为:1.【点睛】此题主要考查角度求解,解题的关键是熟知平行线的性质与判定.17、1.【分析】根据等边三角形的性质得出∠ACB=60°,然后根据等腰三角形的性质以及三角形外角的性质即可求得∠E.【详解】解:∵△ABC是等边三角形,∴∠ACB=60°,∵CE=CD,∴∠E=∠CDE,∵∠ACB=∠E+∠CDE,∴∠E==1°,故答案为1.【点睛】本题考查等边三角形的性质,关键在于牢记基础知识,通过题目找到关键性质.18、1【分析】把2m•1n转化成2m•22n的形式,根据同底数幂乘法法则可得2m•22n=2m+2n,把m+2n=2代入求值即可.【详解】由m+2n﹣2=0得m+2n=2,∴2m•1n=2m•22n=2m+2n=22=1.故答案为:1.【点睛】本题考查了幂的乘方和同底数幂乘法,掌握幂的乘方和同底数幂乘法的运算法则是解题关键.三、解答题(共78分)19、(1)1<DC<9;(2)∠C=70°.【分析】(1)根据三角形三边关系进行求解即可得;(2)根据平行线的性质求得∠AEC的度数,继而根据三角形内角和定理即可求得答案.【详解】(1)在△BCD中,BD-BC<CD<BD+BC,又∵BC=4,BD=1,∴1-4<CD<1+4,即1<DC<9;(2)∵AE∥BD,∠BDE=121°,∴∠AEC=180°-∠BDE=11°,又∵∠A+∠C+∠AEC=180°,∠A=11°,∴∠C=70°.【点睛】本题考查了三角形三边关系,三角形内角和定理,熟练掌握相关知识是解题的关键.20、(1);(2)【分析】(1)根据整式乘法运算法则进行运算,再合并同类项即可.(2)分解因式根据题型用合适的方法即可.【详解】(1)解:原式(2)解:原式【点睛】本题考查了整式乘法和分解因式方法,做整式乘法时能漏项.21、(1),;(2)结论仍成立,证明见解析;(3)的面积的最大值【分析】(1)延长AE交BD于点H,易证,得,,进而得,结合中位线的性质,得,,,,进而得,;(2)设交于,易证,得,,进而得,结合中位线的性质,得,,,,进而得,;(3)易证是等腰直角三角形,,当、、共线时,的值最大,进而即可求解.【详解】(1)如图1,延长AE交BD于点H,∵和是等腰直角三角形,∴,,,∴,∴,∴(SAS),∴,,又∵,∴,∵点、、分别为、、的中点,∴,,,,∴,∴PM⊥AH,∴.故答案是:,;(2)(1)中的结论仍成立,理由如下:如图②中,设交于,∵和是等腰直角三角形,∴,,,∴,∴,∴(SAS),∴,又∵,∴,∵点、、分别为、、的中点,∴,,,,∴,∴,∴,∴,∴;(3)由(2)可知是等腰直角三角形,,∴当的值最大时,的值最大,的面积最大,∴当、、共线时,的最大值,∴,∴的面积的最大值.【点睛】本题主要考查三角形全等的判定和性质定理,等腰直角三角形的性质和判定定理,掌握旋转全等三角形模型,是解题的关键.22、【分析】根据二次根式的混合运算顺序和运算法则进行计算即可解答.【详解】原式===,故答案为:.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算法则是解答的关键,但需要注意最后结果必须为最简二次根式的形式.23、(1)67.5;(1)证明见解析;(3)DE-BE=1.【分析】(1)先根据等腰三角形的性质,得出∠A=∠B=45°=∠CDE,再根据BC=BD,可得出∠BDC的度数,然后可得出∠BDE的度数,最后根据三角形外角的性质可得出∠DEC的度数;(1)先根据条件得出∠ACD=∠BDE,BD=AC,再根据ASA判定△ADC≌△BED,即可得到CD=DE;
(3)先根据条件得出∠DCB=∠CDE,进而得到CE=DE,再在DE上取点F,使得FD=BE,进而判定△CDF≌△DBE(SAS),得出CF=DE=CE,再根据CH⊥EF,运用三线合一即可得到FH=HE,最后得出CE-BE=DE-DF=EF=1HE,即可得出结论.【详解】(1)解:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°=∠CDE,又BC=BD,∴∠BDC=∠BCD=(180°-∠B)=67.5°,∴∠BDE=∠BDC-∠CDE=67.5°-45°=11.5°,∴∠DEC=∠B+∠BDE=67.5°;故答案为:67.5;(1)证明:∵AC=BC,∠CDE=∠A,
∴∠A=∠B=∠CDE,
∵∠CDB=∠A+∠ACD=∠CDE+∠BDE,
∴∠ACD=∠BDE,
又∵BC=BD,
∴BD=AC,
在△ADC和△BED中,,∴△ADC≌△BED(ASA),
∴CD=DE;(3)解:∵CD=BD,
∴∠B=∠DCB,
由(1)知:∠CDE=∠B,
∴∠DCB=∠CDE,
∴CE=DE,
如图,在DE上取点F,使得FD=BE,
在△CDF和△DBE中,,∴△CDF≌△DBE(SAS),
∴CF=DE=CE,
又∵CH⊥EF,
∴FH=HE,∴DE-BE=DE-DF=EF=1HE=1.【点睛】本题主要考查了全等三角形的判定与性质,以及等腰三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形以及等腰三角形.24、(1);(2).【分析】(1)利用平方差公式分解即可;
(2)原式提取,再利用完全平方公式分解即可.【详解】(1);(2).【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.25、(1)见解析;(2);(3)【分析】(1)根据题意描述绘图即可.(2)连接DC,先证明△BCD是等边三角形,再证明
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗卫生公共管理新挑战
- 农业项目消防工程招标文件
- 农村道路改善工程合同
- 医疗器械储存消毒
- 土地复垦框架协议
- 医疗器械贷后管理策略
- 文化产业园区房屋转让租赁合同
- 电力工程师聘用及培训协议
- 哈尔滨市消防员技能培训
- 劳动合同纠纷解决办法
- 大学生体育课学情分析
- 2024年湖南化工职业技术学院单招职业适应性测试题库完整
- 沂蒙红色文化与沂蒙精神智慧树知到期末考试答案章节答案2024年临沂大学
- 黑龙江省哈尔滨市第十七中学校2023-2024学年八年级上学期期中数学试题【含答案】
- 清收清欠工作方案及措施
- 医学知识科普宣传活动方案设计
- (正式版)JBT 5300-2024 工业用阀门材料 选用指南
- 4.2 凝聚法治共识(教学设计)-2023-2024学年九年级道德与法治上册同步课堂(部编版)
- d级洁净区管理与操作规范
- 供应商现场审核培训
- 中国古代军事思想
评论
0/150
提交评论