内蒙古巴彦淖尔市杭锦后旗四校联考2025届八年级数学第一学期期末质量检测试题含解析_第1页
内蒙古巴彦淖尔市杭锦后旗四校联考2025届八年级数学第一学期期末质量检测试题含解析_第2页
内蒙古巴彦淖尔市杭锦后旗四校联考2025届八年级数学第一学期期末质量检测试题含解析_第3页
内蒙古巴彦淖尔市杭锦后旗四校联考2025届八年级数学第一学期期末质量检测试题含解析_第4页
内蒙古巴彦淖尔市杭锦后旗四校联考2025届八年级数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古巴彦淖尔市杭锦后旗四校联考2025届八年级数学第一学期期末质量检测试题学第一学期期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图所示,在中,,D为的中点,过点D分别向,作垂直线段、,则能直接判定的理由是()A. B. C. D.2.下列分解因式正确的是()A. B.C. D.3.下列各式中是完全平方式的是()A. B. C. D.4.现实世界中,对称现象无处不在,中国的黑体字中有些也具有对称性,下列黑体字是轴对称图形的是()A.诚 B.信 C.自 D.由5.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若,则△A6B6A7的边长为()A.6 B.12 C.16 D.326.如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需()A.AB=DC B.OB=OC C.∠C=∠D D.∠AOB=∠DOC7.若一个多边形的每个外角都等于60°,则它的内角和等于()A.180° B.720° C.1080° D.540°8.如图,直线,被直线、所截,并且,,则等于()A.56° B.36° C.44° D.46°9.如图,在中,,,,则的度数为()A. B. C. D.10.从2019年8月1日开始,温州市实行垃圾分类,以下是几种垃圾分类的图标,其中哪个图标是轴对称图形()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,一个正比例函数图象与一次函数y=-x+1的图象相交于点P,则这个正比例函数的表达式是______12.函数中,自变量的取值范围是.13.若a-b=1,则的值为____________.14.若的平方根是±3,则__________.15.如果分式有意义,那么x的取值范围是____________.16.比较大小:-1______(填“>”、“=”或“<”).17.已知△ABC中,AB=AC,AB的垂直平分线交AB于点D,交直线AC于点E.若∠EBC=42°,则∠BAC的度数为_________18.如图,AB=AC,则数轴上点C所表示的数为__________.三、解答题(共66分)19.(10分)如图2,在中,,AC=BC,,,垂足分别为D,E.(2)若AD=2.5cm,DE=2.7cm,求BE的长.(2)如图2,在原题其他条件不变的前提下,将CE所在直线旋转到ABC的外部,请你猜想AD,DE,BE三者之间的数量关系,直接写出结论:________.(不需证明)(3)如图3,若将原题中的条件改为:“在ABC中,AC=BC,D,C,E三点在同一条直线上,并且有,其中为任意钝角”,那么(2)中你的猜想是否还成立?若成立,请予以证明;若不成立,请说明理由.20.(6分)如图,在中,(1)请用尺规作图的方法作出的角平分线交于点.(不写作法,保留作图痕迹.)(2)若,,求的面积.21.(6分)如图,在平面直角坐标系中,正方形顶点为轴正半轴上一点,点在第一象限,点的坐标为,连接.动点在射线上(点不与点、点重合),点在线段的延长线上,连接、,,设的长为.(1)填空:线段的长=________,线段的长=________;(2)求的长,并用含的代数式表示.22.(8分)如图,已知△ABC.(1)求作点P,使点P到B、C两点的距离相等,且点P到∠BAC两边的距离也相等(尺规作图,保留作图痕迹,不写作法).(2)在(1)中,连接PB、PC,若∠BAC=40°,求∠BPC的度数.23.(8分)如图,在等腰中,,点在线段上运动(不与重合),连结,作,交线段于点.(1)当时,=°;点从点向点运动时,逐渐变(填“大”或“小”);(2)当等于多少时,,请说明理由;(3)在点的运动过程中,的形状也在改变,判断当等于多少度时,是等腰三角形.24.(8分)(1)计算:(2)若,求的值.25.(10分)计算:.26.(10分)如图,在平面直角坐标系中,的顶点,,均在正方形网格的格点上.(1)画出关于轴对称的图形;(2)已知和关于轴成轴对称,写出顶点,,的坐标.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据AAS证明△BDE≌△CDF即可.【详解】解:∵D为BC中点,

∴BD=CD,

∵由点D分别向AB、AC作垂线段DE、DF,

∴∠DEB=∠DFC=90°,

在△BDE与△CDF中,∴△BDE≌△CDF(AAS)

故选:D.【点睛】本题考查了全等三角形的判定;判定方法有ASA、AAS、SAS、SSS等,在选择时要结合其它已知在图形上的位置进行选取.2、C【分析】根据因式分解定义逐项分析即可;【详解】A.等式两边不成立,故错误;B.原式=,故错误;C.正确;D.原式=,故错误;故答案选C.【点睛】本题主要考查了因式分解的判断,准确应用公式是解题的关键.3、A【分析】根据完全平方公式a2±2ab+b2=(a±b)2进行分析,即可判断.【详解】解:,是完全平方公式,A正确;其余选项不能配成完全平方形式,故不正确

故选:A.【点睛】本题考查完全平方公式,解题的关键是正确理解完全平方公式,本题属于基础题型.4、D【分析】根据轴对称图形的概念求解即可.【详解】解:根据轴对称图形的概念可知“由”是轴对称图形,故选:D.【点睛】本题考查轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5、C【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2,A4B4=8B1A2,A5B5=1B1A2…进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=,∴A2B1=,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=2,A4B4=8B1A2=4,A5B5=1B1A2=8,…∴△AnBnAn+1的边长为×2n﹣1,∴△A6B6A7的边长为×26﹣1=×25=1.故选:C.【点睛】本题考查的是等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=1B1A2进而发现规律是解题关键.6、B【解析】试题分析:在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),则还需添加的添加是OB=OC,故选B.考点:全等三角形的判定.7、B【解析】设多边形的边数为n,∵多边形的每个外角都等于60°,∴n=360°÷60°=6,∴这个多边形的内角和=(6﹣2)×180°=720°.故选B点睛:由一个多边形的每个外角都等于60°,根据n边形的外角和为360°计算出多边形的边数n,然后根据n边形的内角和定理计算即可.8、D【分析】依据l1∥l2,即可得到∠1=∠3=44°,再根据l3⊥l4,可得∠2=90°-44°=46°.【详解】解:如图,∵l1∥l2,

∴∠1=∠3=44°,

又∵l3⊥l4,

∴∠2=90°-44°=46°,

故选:D.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.9、B【分析】由题中条件可得,即,可由与、的差表示,进而求解即可.【详解】∵,∴,在和中∴(SAS),∴,,∵.∴,∴.故选B.【点睛】考查了全等三角形的判定及性质,解题关键是熟记其判定和性质,并灵活运用解题问题.10、B【解析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项错误;B、不轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题(每小题3分,共24分)11、y=-2x【解析】首先将点P的纵坐标代入一次函数的解析式求得其横坐标,然后代入正比例函数的解析式即可求解.解:∵正比例函数图象与一次函数y=-x+1的图象相交于点P,P点的纵坐标为2,∴2=-x+1解得:x=-1∴点P的坐标为(-1,2),∴设正比例函数的解析式为y=kx,∴2=-k解得:k=-2∴正比例函数的解析式为:y=-2x,故答案为y=-2x12、.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.【详解】依题意,得x-1≥0,

解得:x≥1.【点睛】本题考查的知识点为:二次根式的被开方数是非负数.13、1【分析】先局部因式分解,然后再将a-b=1代入,最后在进行计算即可.【详解】解:=(a+b)(a-b)-2b=a+b-2b=a-b=1【点睛】本题考查了因式分解的应用,弄清题意、并根据灵活进行局部因式分解是解答本题的关键.14、1【分析】根据平方根的定义先得到(±3)2=2a-1,解方程即可求出a.【详解】解:∵2a-1的平方根为±3,

∴(±3)2=2a-1,

解得a=1.

故答案为:1.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.15、x≠1【解析】∵分式有意义,∴,即.故答案为.16、<【解析】首先求出-1的值是多少;然后根据实数大小比较的方法判断即可.【详解】解:-1=2-1=1,∵1<,∴-1<.故答案为:<.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.17、32°或152°【详解】图(1)设则图(2)设,综上述,18、【解析】分析:根据勾股定理列式求出AB的长,即为AC的长,再根据数轴上的点的表示解答.详解:由勾股定理得:AB==,∴AC=,∵点A表示的数是﹣1,∴点C表示的数是﹣1.故答案为﹣1.点睛:本题考查了勾股定理,实数与数轴,是基础题,熟记定理并求出AB的长是解题的关键.三、解答题(共66分)19、(2)BE=3.8cm;(2)AD+BE=DE;(3)成立,证明详见解析.【分析】(2)利用垂直的定义及同角的余角相等,可证得∠EBC=∠DCA,利用AAS可证得△CEB≌△ADC,再利用全等三角形的对应边相等,可证得BE=CD,CE=AD,从而可求出DC的长,即可得到BE的长.(2)利用垂直的定义及同角的余角相等,可证得∠EBC=∠DCA,利用AAS可证得△CEB≌△ADC,再利用全等三角形的对应边相等,可证得BE=CD,CE=AD,然后根据DE=CE+DE,即可证得结论.(3)利用同样的方法,可证得BE=CD,CE=AD,然后根据DE=EC+CD,即可得到DE,AD,BE之间的数量关系.【详解】(2)解:∵,,∴,∴.∵,∴.在和中,,,∵DC=CE-DE,DE=2.7cm,∴BE=3.8cm(2)AD+BE=DE,(不需证明)理由如下:证明:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=93°,∴∠EBC+∠BCE=93°.∵∠BCE+∠ACD=93°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC,CE=AD,∴DE=CE+DE=AD+BE(3)(2)中的猜想还成立,证明:∵,,,∴在和中,,,∴,,∴【点睛】本题考查了三角形全等的判定和性质,掌握全等三角形的判定方法是解题的关键.20、(1)见解析;(2)15【分析】(1)根据用尺规作图作角平分线的方法作图即可;(2)过点D作DG⊥AC于G,根据角平分线的性质可得DG=DB=3,然后根据三角形的面积公式即可求出结论.【详解】解:(1)以C为圆心,任意长度为半径作弧,分别交BC、AC于E、F,然后分别以E、F为圆心,以大于的长为半径作弧,两弧交于一点,连接C和该点并延长交AB于点D,如图所示:CD即为所求;(2)过点D作DG⊥AC于G,∵CD平分∠ACB,∠B=90°,DB=3∴DG=DB=3∵AC=10∴S△ACD=【点睛】此题考查的是用尺规作图作角平分线和角平分线的性质,掌握作角平分线方法和角平分线的性质是解决的关键.21、(1)(1)4,;(2)或【分析】(1)根据点的横坐标可得OA的长,根据勾股定理即可求出OB的长;(2)①点在轴正半轴,可证≌,得到,从而求得;②点在轴负半轴,过点做平行轴的直线,分别交轴、的延长线于点、,证得≌,.【详解】解:(1)∵B(4,4),∴OA=4,AB=4,∵∠OAB=90°,∴.故答案为:4;;(2)①点在轴正半轴,过点做平行轴的直线,分别交轴、的延长线于点、.∵,,∴.同理.∴,,∵轴,∴.∴,∴,∵,∴.∴.∴≌.∴,∴.∴;②点在轴负半轴,过点做平行轴的直线,分别交轴、的延长线于点、.∵,,∴,同理.∴,.∵轴,∴.∴,∴.∵,∴.∴.∴≌.∴,∴.∴;∴或.【点睛】本题以坐标系为载体,主要考查了正方形的性质、等腰三角形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,属于常考题型,熟练掌握上述基本知识、灵活应用分类讨论思想和数形结合是解题的关键.22、(1)答案见解析;(2)∠BPC的度数为140°.【分析】(1)根据线段垂直平分线的性质和角平分线的性质即可作点P,使点P到B、C两点的距离相等,且点P到∠BAC两边的距离也相等;

(2)在(1)中,连接PB、PC,根据∠BAC=40°,即可求∠BPC的度数.【详解】(1)如图,点P即为所求作的点.(2)如图,过点P作PM⊥AC,PN⊥AB于点M、N,∴∠ANP=∠AMP=90°∵∠BAC=40°,∴∠NPM=140°.∵PB=PC,PN=PM,∴Rt△BPN≌Rt△CPM(HL),∴∠NPB=∠MPC,∴∠BPC=∠NPM=140°,∴∠BPC的度数为140°.【点睛】此题考查作图-复杂作图、角平分线的性质、线段垂直平分线的性质,解题的关键是根据语句准确画图.23、(1)35°,小;(2)当DC=3时,△ABD≌△DCE,理由见解析;(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.【分析】(1)根据三角形内角和定理得到∠BAD=35°,点从点向点运动时,∠BAD变大,三角形内角和定理即可得到答案;

(2)当DC=2时,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,得到∠ADB=∠DEC,根据AB=DC=2,证明△ABD≌△DCE;

(3)分DA=DE、AE=AD、EA=ED三种情况,根据等腰三角形的性质、三角形内角和定理计算.【详解】解:(1)∵∠B=40°,∠ADB=105°,

∴∠BAD=180°-∠B-∠ADB=180°-105°-40°=35°,

∵点从点向点运动时,∠BAD变大,且∠BDA=180°-40°-∠BAD∴逐渐变小(2)当DC=3时,△ABD≌△DCE,

理由:∵AB=AC,

∴∠C=∠B=40°,∴∠DEC+∠EDC=140°,

又∵∠ADE=40°,

∴∠ADB+∠EDC=140°,

∴∠ADB=∠DEC,

又∵AB=DC=3,

在△ABD和△DCE中,∴△ABD≌△DCE(AAS);

(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,

当DA=DE时,∠DAE=∠DEA=70°,

∴∠BDA=∠DAE+∠C=70°+40°=110°;

当AD=AE时,∠AED=∠ADE=40°,

∴∠DAE=100°,

此时,点D与点B重合,不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论