云南省红河哈尼族彝族自治州泸西县2025届数学八年级第一学期期末调研试题含解析_第1页
云南省红河哈尼族彝族自治州泸西县2025届数学八年级第一学期期末调研试题含解析_第2页
云南省红河哈尼族彝族自治州泸西县2025届数学八年级第一学期期末调研试题含解析_第3页
云南省红河哈尼族彝族自治州泸西县2025届数学八年级第一学期期末调研试题含解析_第4页
云南省红河哈尼族彝族自治州泸西县2025届数学八年级第一学期期末调研试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省红河哈尼族彝族自治州泸西县2025届数学八年级第一学期期末调研试题期期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列运算中,错误的是()A. B. C. D.2.已知一个直角三角形的两条直角边分别为6cm、8cm,那么这个直角三角形斜边上的高为()A.10 B.2.4 C.4.8 D.143.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数均是8.9环,方差分别是则成绩最稳定的是().A.甲 B.乙 C.丙 D.丁4.如图,在的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中是一个格点三角形.则图中与成轴对称的格点三角形有()A.个 B.个 C.个 D.个5.在平面直角坐标系中,有A(2,﹣1),B(0,2),C(2,0),D(﹣2,1)四点,其中关于原点对称的两点为()A.点A和点B B.点B和点C C.点C和点D D.点D和点A6.若,那么().A.1 B. C.4 D.37.下列运算结果为x-1的是()A. B. C. D.8.下列图形中,对称轴条数最多的图形是()A. B. C. D.9.如图所示的标志中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个10.2019年下半年猪肉价格上涨,是因为猪周期与某种病毒叠加导致,生物学家发现该病毒的直径约为0.00000032mm,数据0.00000032用科学记数法表示正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.正十边形的内角和等于_______,每个外角等于__________.12.当x_______时,分式无意义,当x=_________时,分式的值是0.13.一个边形,从一个顶点出发的对角线有______条,这些对角线将边形分成了______个三角形,这个边形的内角和为__________.14.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段15.如图,在平面直角坐标系中,长方形OABC的顶点O在坐标原点,顶点A、C分别在x、y轴的正半轴上:OA=3,OC=4,D为OC边的中点,E是OA边上的一个动点,当△BDE的周长最小时,E点坐标为_____.16.如图,△ABC≌△ADE,∠B=80°,∠C=30°,则∠E的度数为________.17.多项式加上一个单项式后能称为一个完全平方式,请你写出一个符合条件的单项式__________.18.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为,较短直角边长为,若,大正方形的面积为13,则小正方形的面积为________.三、解答题(共66分)19.(10分)甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程(千米)与小聪行驶的时间(小时)之间的函数关系如图所示,小明父亲出发多少小时,行进中的两车相距8千米.20.(6分)如图(1)所示,在A,B两地间有一车站C,甲汽车从A地出发经C站匀速驶往B地,乙汽车从B地出发经C站匀速驶往A地,两车速度相同.如图(2)是两辆汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a=km,b=h,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式(自变量取值范围不用写);(3)求行驶时间x满足什么条件时,甲、乙两车距离车站C的路程之和最小?21.(6分)阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EF、AF、DF之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC的度数可以求出来.”小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”(1)求∠DFC的度数;(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF、AF、DF之间的数量关系,并证明.22.(8分)(1)因式分解:(2)解方程:(3)计算:23.(8分)某商场销售两种品牌的足球,购买2个品牌和3个品牌的足球共需280元;购买3个品牌和1个品牌的足球共需210元.(1)求这两种品牌足球的单价;(2)开学前,该商场对这两种足球开展了促销活动,具体办法如下:品牌足球按原价的九折销售,品牌足球10个以上超出部分按原价的七折销售.设购买个品牌的足球需要元,购买个品牌的足球需要元,分别求出,关于的函数关系式.(3)某校准备集体购买同一品牌的足球,若购买足球的数量为15个,购买哪种品牌的足球更合算?请说明理由.24.(8分)已知:如图,相交于点.若,求的长.25.(10分)计算下列各题.①(x2+3)(3x2﹣1)②(4x2y﹣8x3y3)÷(﹣2x2y)③[(m+3)(m﹣3)]2④11﹣2×111+115÷113⑤⑥,其中x满足x2﹣x﹣1=1.26.(10分)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.(1)若∠B=65°,求∠NMA的度数;(2)连接MB,若AC=12cm,BC=8cm.①求△MBC的周长;②在直线MN上是否存在点P,使PB+CP的值最小,若存在,标出点P的位置并求PB+CP的最小值,若不存在,说明理由;③设D为BC的中点.求证:.

参考答案一、选择题(每小题3分,共30分)1、D【解析】分式的基本性质是分式的分子、分母同时乘以或除以同一个非1的数或式子,分式的值不变.据此作答.【详解】解:A、分式的分子、分母同时乘以同一个非1的数c,分式的值不变,故A正确;

B、分式的分子、分母同时除以同一个非1的式子(a+b),分式的值不变,故B正确;

C、分式的分子、分母同时乘以11,分式的值不变,故C正确;

D、,故D错误.

故选D.【点睛】本题考查了分式的基本性质.无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为1.2、C【分析】设斜边上的高为h,再根据勾股定理求出斜边的长,根据三角形的面积公式即可得出结论.【详解】设斜边上的高为h,

∵直角三角形的两条直角边为6cm,8cm,

∴斜边的长(cm),则直角三角形的面积为×6×8=×10h,∴h=4.8,

∴这个直角三角形斜边上的高为4.8,

故选:C.【点睛】本题考查了勾股定理的运用,正确利用三角形面积得出其高的长是解题关键.3、D【分析】根据方差是用来衡量一组数据波动大小的量,故由甲、乙、丙、丁的方差可作出判断.【详解】解:由于S丁2<S丙2<S甲2<S乙2,则成绩较稳定的是丁.

故选:D【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4、C【分析】直接利用轴对称图形的性质分别得出符合题意的答案.【详解】符合题意的三角形如图所示:满足要求的图形有6个故选:C【点睛】本题主要考查利用轴对称来设计轴对称图形,关键是要掌握轴对称的性质和轴对称图形的含义.5、D【分析】直接利用关于原点对称点的特点:纵横坐标均互为相反数得出答案.【详解】∵A(2,﹣1),D(﹣2,1)横纵坐标均互为相反数,∴关于原点对称的两点为点D和点A.故选:D.【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键.6、C【分析】由非负数之和为0,可得且,解方程求得a,b,代入a-b问题得解.【详解】解:,且,解得,,,故选:C【点睛】本题考查了代数式的值,正确理解绝对值及算数平方根的非负性是解答本题的关键.7、B【分析】根据分式的基本性质和运算法则分别计算即可判断.【详解】A.=,故此选项错误;B.原式=,故此选项g正确;C.原式=,故此选项错误;D.原式=,故此选项错误.故答案选B.【点睛】本题主要考查分式的混合运算,熟练掌握分式的运算顺序和运算法则是解题的关键.8、D【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A选项图形有4条对称轴;B选项图形有5条对称轴;C选项图形有6条对称轴;D选项图形有无数条对称轴∴对称轴的条数最多的图形是D选项图形,故选:D.【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴.9、C【解析】根据轴对称的定义逐一判断即可.【详解】是轴对称图形,故符合题意;是轴对称图形,故符合题意;是轴对称图形,故符合题意;不是轴对称图形,故不符合题意,共有3个轴对称图形故选C.【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.10、C【分析】科学记数法是一种记数的方法。把一个数表示成a与10的n次幂相乘的形式(1≤|a|<10,n为整数),这种记数法叫做科学记数法.【详解】数据0.00000032用科学记数法表示为,故本题答案选C.【点睛】本题关键在于掌握科学记数法的定义,科学记数法的形式是由两个数的乘积组成的,表示为,其中一个因数为a(1≤|a|<10),另一个因数为.二、填空题(每小题3分,共24分)11、1440°36°【分析】根据多边形的内角和公式以及外角和即可得出结果.【详解】解:正十边形的内角和=(10-2)×180°=1440°,

∵正十边形的每个外角都相等,∴每个外角的度数=.

故答案为:;.【点睛】本题考查多边形的内角和计算公式以及多边形的外角和.多边形内角和定理:多边形内角和等于(n-2)•180°;多边形的外角和为360°.12、x=-2x=2【分析】根据分式值为零的条件是分子等于零且分母不等于零,可得出x的值.【详解】分式无意义,即x+2=0,∴x=-2,分式的值是0,∴可得4−x=0,x+2≠0,解得:x=2.故答案为x=-2,x=2.【点睛】此题考查分式的值为零的条件和无意义的情况,解题关键在于掌握其定义.13、【分析】多边形上任何不相邻的两个顶点之间的连线就是对角线,边形有个顶点,和它不相邻的顶点有个,因而从边形的一个顶点出发的对角线有条,把边形分成个三角形.由分成三角形个数即可求出多边形内角和.【详解】解:从边形的一个顶点出发的对角线有条,可以把边形划分为个三角形,这个边形的内角和为.故答案为:,,.【点睛】此题考查了多边形的对角线的知识,多边形的问题可以通过作对角线转化为三角形的问题解决,是转化思想在多边形中的应用.14、13.【解析】∵CD沿CB平移7cm至EF∴EF//CD,CF=7∴BF=BC-CF=5,EF=CD=4,∠EFB=∠C∵AB=AC,∴∠B=∠C∴EB=EF=4∴C考点:平移的性质;等腰三角形的性质.15、(1,0)【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD'的解析式,然后求直线BD'与x轴的交点即得答案.【详解】解:如图,作D关于x轴的对称点D′,连接D′B交x轴于点E,连接DE,则DE=D′E,此时△BDE的周长最小,∵D为CO的中点,∴CD=OD=2,∵D和D′关于x轴对称,∴D′(0,﹣2),由题意知:点B(3,4),∴设直线BD'的解析式为y=kx+b,把B(3,4),D′(0,﹣2)代入解析式,得:,解得,,∴直线BD'的解析式为y=2x﹣2,当y=0时,x=1,故E点坐标为(1,0).故答案为:(1,0).【点睛】本题考查的是利用待定系数法求直线的解析式和两线段之和最小问题,属于常考题型,熟练掌握求解的方法是解题关键.16、30°【分析】根据△ABC≌△ADE得到∠E=∠C即可.【详解】解:∵△ABC≌△ADE,∴∠C=∠E,∵∠C=30°,∴∠E=30°.故答案为:30°.【点睛】本题考查了全等三角形的性质,全等三角形的对应角相等,对应边相等,难度不大.17、12n【分析】首末两项是3n和2这两个数的平方,那么中间一项为加上或减去2x和1积的2倍,据此解答即可.【详解】由题意得,可以添加12n,此时,符合题意.故答案为:12n(答案不唯一).【点睛】本题考查了完全平方公式,熟练掌握完全平方公式(a±b)2=a2±2ab+b2是解答本题的关键.18、1【分析】观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知(a+b)2=21,大正方形的面积为13,可以得出直角三角形的面积,进而求出答案.【详解】解:如图所示:由题意可知:每个直角三角形面积为,则四个直角三角形面积为:2ab;大正方形面积为a2+b2=13;小正方形面积为13-2ab∵(a+b)2=21,∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21-13=8,∴小正方形的面积为13-8=1.故答案为:1.【点睛】此题主要考查了勾股定理的应用,熟练应用勾股定理理解大正方形面积为a2+b2=13是解题关键.三、解答题(共66分)19、出发或小时时,行进中的两车相距8千米.【分析】根据图象求出小明和父亲的速度,然后设小明的父亲出发x小时两车相距8千米,再分相遇前和相遇后两种情况列出方程求解即可.【详解】解:由图可知,小聪及父亲的速度为:千米/时,小明的父亲速度为:千米/时,设小明的父亲出发小时两车相距8千米,则小聪及父亲出发的时间为小时.根据题意得:或,解得或,所以,出发或小时时,行进中的两车相距8千米.【点睛】本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,从图中准确获取信息求出两人的速度是解题的关键,易错点在于要分两种情况求解.20、(1)120,2,1;(2)线段PM所表示的y与x之间的函数表达式是y=﹣60x+300,线段MN所表示的y与x之间的函数表达式是y=60x﹣300;(3)行驶时间x满足2≤x≤5时,甲、乙两车距离车站C的路程之和最小.【分析】(1)根据题意和图象中的数据,可以求得a、b的值以及AB两地之间的距离;(2)根据(1)中的结果和函数图象中的数据,可以求得线段PM、MN所表示的y与x之间的函数表达式;(3)根据题意,可以写出甲、乙两车距离车站C的路程之和和s之间的函数关系式,然后利用一次函数的性质即可解答本题.【详解】(1)两车的速度为:300÷5=60km/h,a=60×(7﹣5)=120,b=7﹣5=2,AB两地的距离是:300+120=1.故答案为:120,2,1;(2)设线段PM所表示的y与x之间的函数表达式是y=kx+b,,得,即线段PM所表示的y与x之间的函数表达式是y=﹣60x+300;设线段MN所表示的y与x之间的函数表达式是y=mx+n,,得,即线段MN所表示的y与x之间的函数表达式是y=60x﹣300;(3)设DE对应的函数解析式为y=cx+d,,得,即DE对应的函数解析式为y=﹣60x+120,设EF对应的函数解析式为y=ex+f,,得,即EF对应的函数解析式为y=60x﹣120,设甲、乙两车距离车站C的路程之和为skm,当0≤x≤2时,s=(﹣60x+300)+(﹣60x+120)=﹣120x+1,则当x=2时,s取得最小值,此时s=180,当2<x≤5时,s=(﹣60x+300)+(60x﹣120)=180,当5≤x≤7时,s=(60x﹣300)+(60x﹣120)=120x﹣1,则当x=5时,s取得最小值,此时s=180,由上可得:行驶时间x满足2≤x≤5时,甲、乙两车距离车站C的路程之和最小.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.21、(1)60°;(2)EF=AF+FC,证明见解析;(3)AF=EF+2DF,证明见解析.【分析】(1)可设∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC的度数;(2)在EC上截取EG=CF,连接AG,证明△AEG≌△ACF,然后再证明△AFG为等边三角形,从而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,连接BG,BF,证明方法类似(2),先证明△ABG≌△EBF,再证明△BFG为等边三角形,最后可得出结论.【详解】解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD=∠CAD=α,又△ABE为等边三角形,∴AE=AB=AC,∠EAB=60°,∴可设∠AEC=∠ACE=β,在△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,证明如下:∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,则∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,连接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG为等边三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)补全图形如图所示,结论:AF=EF+2DF.证明如下:同(1)可设∠BAD=∠CAD=α,∠ACE=∠AEC=β,∴∠CAE=180°-2β,∴∠BAE=2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE为等边三角形,∴∠ABE=∠AFC=60°,∴由8字图可得:∠BAD=∠BEF,在AF上截取AG=EF,连接BG,BF,又AB=BE,∴△ABG≌△EBF(SAS),∴BG=BF,又AF垂直平分BC,∴BF=CF,∴∠BFA=∠AFC=60°,∴△BFG为等边三角形,∴BG=BF,又BC⊥FG,∴FG=BF=2DF,∴AF=AG+GF=BF+EF=2DF+EF.【点睛】本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.22、(1);(2)是原方程的解;(3)【分析】(1)提取公因式后用平方差公式分解即可;(2)根据去分母、去括号、移项、合并同类项、系数化为1求解,求解后检验即可;(3)根据单项式乘以多项式的法则及完全平方公式取括号后,合并同类项即可.【详解】(1)(2)方程两边同时乘以得:检验:当时,∴是原方程的解.(3)原式【点睛】本题考查的是因式分解、解分式方程、整式的混合运算,掌握因式分解的方法:提公因式法及公式法,解分式方程的一般步骤及整式的运算法则是关键.23、(1)A品牌足球的单价为50元,B品牌足球的单价为60元;(2);;(3)购买A品牌的足球更划算,理由见解析【分析】(1)设A品牌足球的单价为a元,B品牌足球的单价为b元,根据题意列方程组,解方程组即可;(2)分别根据A、B品牌的促销方式表示出购买所需费用即可,对B品牌分类讨论;(3)根据上述所求关系式,分别求出当购买足球的数量为15个时,购买两种品牌足球的价格,花费越少越划算.【详解】(1)设A品牌足球的单价为x元,B品牌足球的单价为y元,,解得:.答:A品牌足球的单价为50元,B品牌足球的单价为60元.(2)A品牌:;B品牌:①当0≤x≤10时,;②当x>10时,.综上所述:;.(3)购买A品牌:45×15=675(元);购买B品牌:15>10,42×15+180=810,675<810,所以购买A品牌的足球更划算.【点睛】本题主要考查二元一次方程组和一次函数的实际应用,正确列出二元一次方程组和一次函数是解题关键.24、【分析】只要证明△ABC≌△DCB(SSS),即可证明∠OBC=∠OCB,即可得:OB=OC.【详解】在△ABC和△DCB中∴△ABC≌△DCB(SSS)∴∠OBC=∠OCB∴OB=OC∵OC=2∴OB=2【点睛】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题.25、①3x4+8x2﹣3;②﹣2+4xy2;③m4﹣18m2+81;④111;⑤;⑥,1【分析】①利用多项式乘以多项式进行计算即可;②利用多项式除以单项式法则进行计算即可;③首先利用平方差计算,再利用完全平方进行计算即可;④首先计算同底数幂的乘除,再算加法即可;⑤首先计算乘法,再算分式的加法即可;⑥先算小括号里面的减法,再算除法,最后再计算减法即可.【详解】解:①原式,;②原式;③原式;④原式;⑤原式,,;⑥,,,,,,,,代入

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论