版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
临沂市2025届数学八年级第一学期期末学业质量监测模拟试题模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列图形中有稳定性的是()A.平行四边形 B.长方形 C.正方形 D.直角三角形2.如图,边长分别为和的两个正方形拼接在一起,则图中阴影部分的面积为()A. B. C. D.3.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是()A.504m2 B.m2 C.m2 D.1009m24.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有匹,小马有匹,则可列方程组为()A. B.C. D.5.正比例函数y=kx的函数值y随x的增大而增大,则一次函数y=x-k的图像大致是().A. B. C. D.6.如果数据x1,x2,…,xn的方差是3,则另一组数据2x1,2x2,…,2xn的方差是()A.3 B.6 C.9 D.127.如图,如在△ABC中,BC=8,AB的垂直平分线交BC于D,AC的垂直平分线交BC与E,则△ADE的周长等于()A.8 B.4 C.2 D.18.将一副三角板按图中方式叠放,那么两条斜边所夹锐角的度数是()A.45°B.75°C.85°D.135°9.如图,以直角三角形的三边为边,分别向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形有()A.1个 B.2个 C.3个 D.4个10.某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为A. B.C. D.11.一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数可能是()A.10,11,12 B.11,10C.8,9,10 D.9,1012.已知点,则点到轴的距离是()A. B. C. D.二、填空题(每题4分,共24分)13.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为__________.14.如图,在的同侧,,点为的中点,若,则的最大值是_____.15.如图,直线,被直线所截,若直线,,则____.16.请写出一个小于4的无理数:________.17.今年我国发生的猪瘟疫情是由一种病毒引起的,这种病毒的直径约0.000000085米.数据0.000000085米用科学记数法表示为______米.18.(x2y﹣xy2)÷xy=_____.三、解答题(共78分)19.(8分)如图1,把一张长方形的纸片ABCD沿对角线BD折叠,点C落在E处,BE交AD于点F.(1)求证:FB=FD;(2)如图2,连接AE,求证:AE∥BD;(3)如图3,延长BA,DE相交于点G,连接GF并延长交BD于点H,求证:GH垂直平分BD.20.(8分)(1)如图,∠1=∠2,∠3=∠4,求证:AC=AD(2)化简:21.(8分)某校积极开展“我爱我的祖国”教育知识竞赛,八年级甲、乙两班分别选5名同学参加比赛,其预赛成绩如图所示:(1)根据上图填写下表:平均数中位数众数方差甲班8.5乙班8.5101.6(2)根据上表数据,分别从平均数、中位数、众数、方差的角度对甲乙两班进行分析.22.(10分)随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽气车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元.(1)求A、B两种型号的汽车每辆进价分别为多少方元?(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?23.(10分)已知三角形△ABC,AB=3,AC=8,BC长为奇数,求BC的长.24.(10分)下面是小东设计的“作△ABC中BC边上的高线”的尺规作图过程.已知:△ABC.求作:△ABC中BC边上的高线AD.作法:如图,①以点B为圆心,BA的长为半径作弧,以点C为圆心,CA的长为半径作弧,两弧在BC下方交于点E;②连接AE交BC于点D.所以线段AD是△ABC中BC边上的高线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵=BA,=CA,∴点B,C分别在线段AE的垂直平分线上()(填推理的依据).∴BC垂直平分线段AE.∴线段AD是△ABC中BC边上的高线.25.(12分)多边形在直角坐标系中如图所示,在图中分别作出它关于轴、轴的对称图形.26.如图1,直线与轴交于点,交轴于点,直线与关于轴对称,交轴于点,(1)求直线的解析式;(2)过点在外作直线,过点作于点,过点作于点.求证:(3)如图2,如果沿轴向右平移,边交轴于点,点是的延长线上的一点,且,与轴交于点,在平移的过程中,的长度是否为定值,请说明理由.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据三角形具有稳定性解答.【详解】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:D.【点睛】本题考查了三角形具有稳定性,是基础题,需熟记.2、C【分析】根据三角形和矩形的面积公式,利用割补法,即可求解.【详解】由题意得:,,,,∴===.故选C.【点睛】本题主要考查求阴影部分图形的面积,掌握割补法求面积,是解题的关键.3、A【分析】由OA4n=2n知OA2017=+1=1009,据此得出A2A2018=1009-1=1008,据此利用三角形的面积公式计算可得.【详解】由题意知OA4n=2n,∴OA2016=2016÷2=1008,即A2016坐标为(1008,0),∴A2018坐标为(1009,1),则A2A2018=1009-1=1008(m),∴=A2A2018×A1A2=×1008×1=504(m2).故选:A.【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.4、B【分析】设大马有匹,小马有匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可.【详解】解:设大马有匹,小马有匹,由题意得:,故选:B.【点睛】本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.5、B【分析】根据正比例函数y=kx的函数值y随x的增大而增大,得;在结合一次函数y=x-k的性质分析,即可得到答案.【详解】∵正比例函数y=kx的函数值y随x的增大而增大∴∴当时,一次函数∵一次函数y=x-k的函数值y随x的增大而增大∴选项B图像正确故选:B.【点睛】本题考查了一次函数的知识;解题的关键是熟练掌握一次函数、正比例函数的性质,从而完成求解.6、D【分析】先求出另一组数据的平均数,然后再利用方差公式求出方差,找到与给定的一组数据的方差之间的关系,则答案可解.【详解】设数据x1,x2,…,xn的平均数为,方差为,则,,则另一组数据的平均数为,方差为:故选:D.【点睛】本题主要考查平均数和方差的求法,掌握平均数和方差的求法是解题的关键.7、A【分析】根据线段垂直平分线的性质可得AD=BD,AE=EC,进而可得AD+ED+AE=BD+DE+EC,从而可得答案.【详解】解:∵AB的垂直平分线交BC于D,
∴AD=BD,
∵AC的垂直平分线交BC与E,
∴AE=CE,
∵BC=1,
∴BD+CE+DE=1,
∴AD+ED+AE=1,
∴△ADE的周长为1,
故答案为:1.【点睛】此题主要考查了线段垂直平分线的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.8、B【分析】先根据直角三角板的性质求出∠1及∠2的度数,再根据三角形内角与外角的关系即可解答.【详解】解:如图,由题意,可得∠2=45°,∠1+∠2=90°,
∴∠1=90°45°=45°,
∴∠α=∠1+30°=45°+30°=75°.
故答案为:75°.【点睛】本题考查的是三角形内角和定理,三角形外角的性质,掌握三角形的外角等于与它不相邻的两个内角的和是解题的关键.9、D【解析】试题分析:(1)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.(2)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.(1)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.(4)S1=,S2=,S1=,∵,∴S1+S2=S1.综上,可得:面积关系满足S1+S2=S1图形有4个.故选D.考点:勾股定理.10、B【解析】试题分析:因为设甲车间每天能加工x个,所以乙车间每天能加工1.3x个,由题意可得等量关系:甲乙两车间生产2300件所用的时间+乙车间生产2300件所用的时间=33天,根据等量关系可列出方程:.故选B.11、A【解析】先根据多边形的内角和公式(n-2)•180°求出截去一个角后的多边形的边数,再根据截去一个角后边数增加1,不变,减少1讨论得解.【详解】设多边形截去一个角的边数为n,则(n−2)⋅180°=1620°,解得n=11,∵截去一个角后边上可以增加1,不变,减少1,∴原来多边形的边数是10或11或12.故选A.【点睛】此题考查多边形内角与外角,解题关键在于掌握计算公式.12、B【分析】根据点到y轴的距离等于横坐标的长度解答即可.【详解】点P(-3,5)到y轴的距离是.故选:B.【点睛】本题考查了点的坐标,熟记点到y轴的距离等于横坐标的长度是解题的关键.二、填空题(每题4分,共24分)13、2+2【解析】过A作AF⊥BC于F,根据等腰三角形的性质得到∠B=∠C=30°,得到AB=AC=2,根据线段垂直平分线的性质得到BE=AE,即可得到结论.【详解】解:过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故答案为2+2.【点睛】本题考查了线段垂直平分线性质、三角形内角和定理、等腰三角形的性质、含30度角的直角三角形性质等知识点,主要考查运用性质进行推理的能力.14、14【分析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′,证明△A′MB′为等边三角形,即可解决问题.【详解】解:如图,作点关于的对称点,点关于的对称点.,,,,,为等边三角形,的最大值为,故答案为.【点睛】本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题15、【分析】本题主要利用两直线平行,同位角相等;以及邻补角的定义进行做题.【详解】∵a∥b,∴∠1=∠3=,∵∠3与∠2互为邻补角,∴∠2=.故答案为:.【点睛】本题重点考查了平行线的性质及邻补角的定义,是一道较为简单的题目.16、答案不唯一如,等【分析】开放性的命题,答案不唯一,写出一个小于4的无理数即可.【详解】开放性的命题,答案不唯一,如等.故答案为不唯一,如等.【点睛】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查了算术平方根.17、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:根据科学记数法的表示方法,0.000000015=1.5×10-1.
故答案为:1.5×10-1【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.18、9x﹣4y+1【分析】直接利用整式的除法运算法则计算得出答案.【详解】解:原式==9x﹣4y+1.故答案为:9x﹣4y+1.【点睛】本题考查了整式的除法运算,解题关键是正确掌握相关运算法则.三、解答题(共78分)19、(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】试题分析:(1)根据矩形的性质和折叠的性质可得:AB=DC=DE,∠BAD=∠BCD=∠BED=90°,根据AAS可证△ABF≌△EDF,根据全等三角形的性质可证BF=DF;(2)根据全等三角形的性质可证:FA=FE,根据等边对等角可得:∠FAE=∠FEA,根据三角形内角和定理可证:2∠AEF+∠AFE=2∠FBD+∠BFD=180°,所以可证∠AEF=∠FBD,根据内错角相等,两直线平行可证AE∥BD;(3)根据矩形的性质可证:AD=BC=BE,AB=CD=DE,BD=DB,根据SSS可证:△ABD≌△EDB,根据全等三角形的性质可证:∠ABD=∠EDB,根据等角对等边可证:GB=GD,根据HL可证:△AFG≌△EFG,根据全等三角形的性质可证:∠AGF=∠EGF,所以GH垂直平分BD.试题解析:(1)∵长方形ABCD,∴AB=DC=DE,∠BAD=∠BCD=∠BED=90°,在△ABF和△DEF中,∴△ABF≌△EDF(AAS),∴BF=DF.(2)∵△ABF≌△EDF,∴FA=FE,∴∠FAE=∠FEA,又∵∠AFE=∠BFD,且2∠AEF+∠AFE=2∠FBD+∠BFD=180°,∴∠AEF=∠FBD,∴AE∥BD,(3)∵长方形ABCD,∴AD=BC=BE,AB=CD=DE,BD=DB,∴△ABD≌△EDB(SSS),∴∠ABD=∠EDB,∴GB=GD,在△AFG和△EFG中,∠GAF=∠GEF=90°,FA=FE,FG=FG,∴△AFG≌△EFG(HL),∴∠AGF=∠EGF,∴GH垂直平分BD.【方法II】(1)∵△BCD≌△BED,∴∠DBC=∠EBD又∵长方形ABCD,∴AD∥BC,∴∠ADB=∠DBC,∴∠EBD=∠ADB,∴FB=FD.(2)∵长方形ABCD,∴AD=BC=BE,又∵FB=FD,∴FA=FE,∴∠FAE=∠FEA,又∵∠AFE=∠BFD,且2∠AEF+∠AFE=2∠FBD+∠BFD=180°,∴∠AEF=∠FBD,∴AE∥BD,(3)∵长方形ABCD,∴AD=BC=BE,AB=CD=DE,BD=DB,∴△ABD≌△EDB,∴∠ABD=∠EDB,∴GB=GD,又∵FB=FD,∴GF是BD的垂直平分线,即GH垂直平分BD.考点:1.折叠的性质;2.全等三角形的判定与性质;3.平行线的性质与判定;4.矩形的性质.20、(1)证明见解析;(2)4a-1【分析】(1)由题意,可以得到,再由三角形全等的性质可得AC=AD;
(2)根据平方差公式和完全平方公式把算式展开,再合并同类项可得解.【详解】(1)证明:·因为∠3=∠4,所以∠ABC=∠ABD在△ABC和△ABD中,所以AC=AD(2)解:原式==4a-1.【点睛】本题考查三角形全等的判定和性质以及乘法公式的应用,熟练掌握三角形全等的判定和性质定理以及乘法公式的形式是解题关键.21、(3)3.5,3.5,2.7,3;(2)见解析【分析】(3)利用条形统计图,结合众数、方差、中位数的定义分别求出答案;(2)利用平均数、众数、方差、中位数的定义分析得出答案.【详解】解:(3)如图:平均数中位数众数方差甲班3.53.53.52.7乙班3.53323.6甲班的平均数是:;∵3.5出现了2次,出现的次数最多,∴甲的众数为:3.5分,;乙的中位数是:3;故答案为:3.5,3.5,2.7,3;(2)从平均数看,两班平均数相同,则甲、乙两班的成绩一样高;从中位数看,甲班的中位数大,所以甲班的成绩较好;从众数看,乙班的众数大,所以乙班的成绩较好;从方差看,甲班的方差小,所以甲班的成绩更稳定;【点睛】此题主要考查了平均数、众数、方差、中位数的定义,正确把握相关定义是解题关键.22、(1)A种型号的汽车每辆进价为25万元,B种型号的汽车每辆进价为10万元;(2)三种购车方案,方案详见解析;(3)购买A种型号的汽车2辆,B种型号的汽车15辆,可获得最大利润,最大利润为91000元【分析】(1)设A种型号的汽车每辆进价为x万元,B种型号的汽车每辆进价为y万元,根据题意列出方程组求解即可.(2)设购买A种型号的汽车m辆,B种型号的汽车n辆,根据题意列出方程,找出满足题意的m,n的值.(3)根据题意可得,销售一辆A型汽车比一辆B型汽车获得更多的利润,要获得最大的利润,需要销售A型汽车最多,根据(2)中的购买方案选择即可.【详解】(1)设A种型号的汽车每辆进价为x万元,B种型号的汽车每辆进价为y万元,根据题意可得,解得综上,A种型号的汽车每辆进价为25万元,B种型号的汽车每辆进价为10万元(2)设购买A种型号的汽车m辆,B种型号的汽车n辆,根据题意可得25m+10n=200,且m,n是正整数当m=2,n=15当m=4,n=10当m=6,n=5购买方案有三种,分别是方案1:购买A种型号的汽车2辆,B种型号的汽车15辆;方案2:购买A种型号的汽车4辆,B种型号的汽车10辆;方案3:购买A种型号的汽车6辆,B种型号的汽车5辆.(3)方案1:方案2:;方案3:73000(元)即方案1可获得最大利润,最大利润为91000元.【点睛】本题考查二元一次方程组的实际应用和最优方案问题,理解题中的等量关系并列出方程求解是解题的关键.23、7或1.【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围;又知道第三边长为奇数,就可以知道第三边的长度.【详解】解:根据三角形的三边关系,得8-3<B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑施工合同样本:学校建设协议
- 电力公司供水管道铺设项目合同
- 城市环保光纤布线合同
- 智能办公监控系统施工协议
- 交通运输服务招投标合同模板
- 宿舍区消防演练计划
- 社团投资管理规范
- 制造业临时工薪资发放规范
- 南宁市物业安全隐患排查
- 皮具店防火门安装协议
- 2020湖南湖南省建筑施工开工安全生产条件承诺书
- 英语语音教程ppt课件
- GS069电动工具直流调速电路
- 二十五项反措(汽机专业)
- (交通运输)智慧城市系列之智能交通系统(完整版)
- 全国教师信息管理系统信息变更修改操作方法
- 理想别墅的数学_Colin R Microsoft W
- 电流互感器选用参考
- 附件2:跨境业务人民币结算收款说明
- 污水处理厂350KW分布式光伏发电项目初步设计方案
- 民航货物运输PPT课件
评论
0/150
提交评论