2025届湖北省麻城市张家畈镇中学数学八年级第一学期期末综合测试试题含解析_第1页
2025届湖北省麻城市张家畈镇中学数学八年级第一学期期末综合测试试题含解析_第2页
2025届湖北省麻城市张家畈镇中学数学八年级第一学期期末综合测试试题含解析_第3页
2025届湖北省麻城市张家畈镇中学数学八年级第一学期期末综合测试试题含解析_第4页
2025届湖北省麻城市张家畈镇中学数学八年级第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖北省麻城市张家畈镇中学数学八年级第一学期期末综合测试试题合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.以下列各组线段为边作三角形,不能构成直角三角形的是()A.3,5,6 B.3,4,5 C.5,12,13 D.9,40,412.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”四个节气,其中轴对称图形是()A. B. C. D.3.如图,把剪成三部分,边,,放在同一直线上,点都落在直线上,直线.在中,若,则的度数为()A. B. C. D.4.下列各式是分式的是()A. B. C. D.5.如图,在中,点是边的中点,交对角线于点,则等于()A. B. C. D.6.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为()A.1 B.5 C.7 D.497.满足下列条件的中,不是直角三角形的是A. B.C. D.8.如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120° B.90° C.100° D.30°9.三个正方形的位置如图所示,若,则()A. B. C. D.10.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是()A.诚 B.信 C.友 D.善11.如图,直线与直线交于点,则方程组解是()A. B. C. D.12.如图,的平分线与的垂直平分线相交于点,于点,,,则的长为()A. B. C. D.二、填空题(每题4分,共24分)13.要测量河岸相对两点A,B的距离,已知AB垂直于河岸BF,先在BF上取两点C,D,使CD=CB,再过点D作BF的垂线段DE,使点A,C,E在一条直线上,如图,测出DE=20米,则AB的长是_____米.14.2015年诺贝尔生理学或医学奖得主中国科学家屠呦呦,发现了一种病毒的长度约为0.00000456毫米,则数据0.00000456用科学记数法表示为_________.15.在平面直角坐标系中,将点先向右平移个单位长度,再向下平移个单位长度后所得到的点坐标为_________.16.若a-b=1,则的值为____________.17.如图,△ABC≌△ADE,∠B=70°,∠C=30°,∠DAC=20°,则∠EAC的度数为______.18.如图,已知△ABC的周长是22,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是_____.三、解答题(共78分)19.(8分)如图,点B,F,C,E在一条直线上,∠A=∠D,AC=DF,且AC∥DF.求证:△ABC≌△DEF.20.(8分)按下列要求解题(1)计算:(2)化简:(3)计算:21.(8分)阅读下列材料,并解答总题:材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母x+1,可设则=∵对于任意上述等式成立∴,解得,∴这样,分式就拆分成一个整式与一个分式的和的形式.(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式为___________;(2)已知整数使分式的值为整数,则满足条件的整数=________.22.(10分)材料一:我们可以将任意三位数记为,(其中、、分别表示该数的百位数字,十位数字和个位数字,且),显然.材料二:若一个三位数的百位数字,十位数字和个位数字均不为0,则称之为初始数,比如123就是一个初始数,将初始数的三个数位上的数字交换顺序,可产生出5个新的初始数,比如由123可以产生出132,213,231,312,321这5个新初始数,这6个初始数的和成为终止数.(1)求初始数125生成的终止数;(2)若一个初始数,满足,且,记,,,若,求满足条件的初始数的值.23.(10分)先化简代数式:,然后再从﹣2≤x≤2的范围内选取一个合适的整数代入求值.24.(10分)如图1,点P,Q分别是等边△ABC边AB,BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ,CP交于点M.(1)求证:△ABQ△CAP;(2)如图1,当点P,Q分别在AB,BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.(3)如图2,若点P,Q在分别运动到点B和点C后,继续在射线AB,BC上运动,直线AQ,CP交点为M,则∠QMC=度.(直接填写度数)25.(12分)某商场计划销售甲、乙两种产品共件,每销售件甲产品可获得利润万元,每销售件乙产品可获得利润万元,设该商场销售了甲产品(件),销售甲、乙两种产品获得的总利润为(万元).(1)求与之间的函数表达式;(2)若每件甲产品成本为万元,每件乙产品成本为万元,受商场资金影响,该商场能提供的进货资金至多为万元,求出该商场销售甲、乙两种产品各为多少件时,能获得最大利润.26.如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.(1)如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?

参考答案一、选择题(每题4分,共48分)1、A【解析】根据勾股定理逆定理依次计算即可得到答案.【详解】A.,故不能构成直角三角形;B.,能构成直角三角形;C.,能构成直角三角形;D.,能构成直角三角形;故选:A.【点睛】此题考查勾股定理的逆定理,熟记定理并正确计算是解题的关键.2、D【分析】根据轴对称图形的概念判断即可.【详解】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.【点睛】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.3、C【分析】首先利用平行线间的距离处处相等,得到点O是△ABC的内心,点O为三个内角平分线的交点,从而容易得到∠BOC=90°+∠BAC,通过计算即可得到答案.【详解】解:如图,过点O分别作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,

∵直线MN∥l,

∴OD=OE=OF,

∴点O是△ABC的内心,点O为三个内角平分线的交点,

∴∠BOC=180-(180-∠BAC)=90°+∠BAC=130°,

∴∠BAC=80°.

故选C.【点睛】本题考查了平行线的性质及三角形内心的性质及判定,利用平行线间的距离处处相等判定点O是△ABC的内心是解题的关键.4、D【分析】由分式的定义分别进行判断,即可得到答案.【详解】解:根据分式的定义,则是分式;故选:D.【点睛】本题考查了分式的定义,解题的关键是掌握分式的定义进行判断.5、C【分析】由题意根据题意得出△DEF∽△BCF,利用点E是边AD的中点得出答案即可.【详解】解:∵▱ABCD,∴AD∥BC,∴△DEF∽△BCF,∵点E是边AD的中点,∴AE=ED=AD=BC,∴=.故选:C.【点睛】本题主要考查平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF∽△BCF是解题关键.6、B【分析】根据等腰三角形的性质可知BC上的中线AD同时是BC上的高线,根据勾股定理求出AB的长即可.【详解】∵等腰三角形ABC中,AB=AC,AD是BC上的中线,

∴BD=CD=BC=3,AD同时是BC上的高线,

∴AB=.

故它的腰长为1.

故选:B.【点睛】本题考查了勾股定理及等腰三角形的性质.解题关键是得出中线AD同时是BC上的高线.7、D【分析】根据勾股定理的逆定理可判断A、B两项,根据三角形的内角和定理可判断C、D两项,进而可得答案.【详解】解:A、∵,∴,∴∠C=90°,所以△ABC是直角三角形,本选项不符合题意;B、由可设,∵,∴∠C=90°,所以△ABC是直角三角形,本选项不符合题意;C、∵,∴,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,所以△ABC是直角三角形,本选项不符合题意;D、由可设,∵∠A+∠B+∠C=180°,∴=180°,解得:,∴,所以△ABC不是直角三角形,本选项符合题意.故选:D.【点睛】本题考查了勾股定理的逆定理和三角形的内角和定理,属于基础题型,熟练掌握勾股定理的逆定理是解题的关键.8、C【详解】∠A=∠ACD﹣∠B=120°﹣20°=100°,故选C.9、A【分析】如图,根据正方形的性质可得,∠4、∠5、∠6的度数,根据六个角的和等于360°,可得答案.【详解】如图:∵三个图形都是正方形∴∠4=∠5=∠6=90°∵∠3=30°∠1+∠2+∠3+∠4+∠5+∠6=360°∴∠1+∠2=360°-∠3-∠4-∠5-∠6=360°-30°-90°-90°-90°=60°故选:A【点睛】本题主要考查正方形的性质和三角形外角和定理:三角形外角和等于360°,掌握正方形性质和三角形外角和定理是解题的关键.10、D【分析】根据轴对称图形的概念逐一进行分析即可得.【详解】A.不是轴对称图形,故不符合题意;B.不是轴对称图形,故不符合题意;C.不是轴对称图形,故不符合题意;D.是轴对称图形,符合题意,故选D.【点睛】本题考查了轴对称图形的识别,熟知“平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形”是解题的关键.11、B【分析】根据一次函数与二元一次方程组的关系解答即可.【详解】∵直线与直线交于点,∴方程组即的解是.故选B.【点睛】本题主要考查一次函数函数与二元一次方程组的关系,函数图象交点坐标为两函数解析式组成的方程组的解.12、A【解析】连接CD,BD,由∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD,DF=DE,继而可得AF=AE,易证得Rt△CDF≌Rt△BDE,则可得BE=CF,继而求得答案.【详解】如图,连接CD,BD,∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,∴AE=AF,∵DG是BC的垂直平分线,∴CD=BD,在Rt△CDF和Rt△BDE中,,∴Rt△CDF≌Rt△BDE(HL),∴BE=CF,∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,∵AB=11,AC=5,∴BE=×(11-5)=1.故选:A.【点睛】此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题二、填空题(每题4分,共24分)13、1【分析】由AB、ED垂直于BD,即可得到∠ABC=∠EDC=90°,从而证明△ABC≌△EDC此题得解.【详解】解:∵AB⊥BD,ED⊥AB,∴∠ABC=∠EDC=90°,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴AB=ED=1.故答案为:1.【点睛】考查了三角形全等的判定和性质,解题是熟练判定方法,本题属于三角形全等的判定应用.14、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:数据0.00000451用科学记数法表示为4.51×10-1.故答案为:.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15、(-1,0)【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点先向右平移个单位长度,再向下平移个单位长度后所得到的点坐标为(-3+2,2-2),即(-1,0)故答案为:(-1,0)【点睛】此题主要考查了坐标与图形的变化-平移:向右平移a个单位,坐标P(x,y)得到P'(x+a,y);向左平移a个单位,坐标P(x,y)得到P'(x-a,y);向上平移a个单位,坐标P(x,y)得到P'(x,y+a);向下平移a个单位,坐标P(x,y)得到P'(x,y-a).16、1【分析】先局部因式分解,然后再将a-b=1代入,最后在进行计算即可.【详解】解:=(a+b)(a-b)-2b=a+b-2b=a-b=1【点睛】本题考查了因式分解的应用,弄清题意、并根据灵活进行局部因式分解是解答本题的关键.17、60°【分析】根据三角形内角和定理求出∠BAC,根据全等三角形的性质计算即可.【详解】解:∵∠B=70°,∠C=30°,∴∠BAC=180°-70°-30°=80°,∵△ABC≌△ADE,∴∠DAE=∠BAC=80°,∴∠EAC=∠DAE-∠DAC=60°,故答案为60°.【点睛】本题考查全等三角形的性质、三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.18、1【分析】根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等,从而可得到△ABC的面积等于周长的一半乘以OD,然后列式进行计算即可求解.【详解】解:如图,连接OA,作OE⊥AB于E,OF⊥AC于F.∵OB、OC分别平分∠ABC和∠ACB,∴OD=OE=OF,∴S△ABC=S△BOC+S△AOB+S△AOC===×22×3=1.故答案为:1.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,判断出三角形的面积与周长的关系是解题的关键.三、解答题(共78分)19、见解析;【解析】首先根据平行线的性质可得∠ACB=∠DFE,再根据ASA定理证明△ABC≌△DEF即可.【详解】证明:∵AC∥DF,∴∠ACB=∠DFE.在△ABC和△DEF中,∠A=∠D,AC=DF,∠ACB=∠DFE,∴△ABC≌△DEF.(ASA)【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.20、(1);(2);(3)【分析】(1)化成最简二次根式后合并即可;(2)先化成最简二次根式,分母有理化后再合并即可;(3)先分子分母因式分解,把除法运算转化成乘法运算,约分即可.【详解】(1)=3×2-2×4+2=6-8+2=-2+2;(2);(3)==.【点睛】本题考查了分式的乘除和二次根式的化简,熟练掌握运算法则是解题的关键.21、(1);(2)4、16、2、-10【分析】(1)仿照例题,列出方程组,求出a、b的值,把原式拆分成一个整式与一个分式(分子为整数)的和的形式;

(2)仿照例题,列出方程组,求出a、b的值,把原式拆分成一个整式与一个分式(分子为整数)的和的形式,根据整除运算解答;【详解】解:(1)由分母x-1,可设x2+6x-3=(x-1)(x+a)+b

则x2+6x-3=(x-1)(x+a)+b=x2+ax-x-a+b=x2+(a-1)x-a+b

∵对于任意x上述等式成立,解得:,拆分成x+7+故答案为:x+7+(2)由分母x-3,可设2x2+5x-20=(x-3)(2x+a)+b

则2x2+5x-20=(x-3)(2x+a)+b=2x2+ax-6x-3a+b=2x2+(a-6)x-3a+b

∵对于任意x上述等式成立,,解得拆分成2x+11+∵整数使分式的值为整数,∴为整数,则满足条件的整数x=4、16、2、-10,

故答案为:4、16、2、-10;【点睛】本题考查的是分式的混合运算,掌握多项式乘多项式的运算法则、二元一次方程组的解法,读懂材料掌握方法是解题的关键.22、(1)1776(2)或.【分析】(1)根据终止数的定义即可求解;(2)根据根据三位数的构成及x,y,z的特点表示出a,b,c的关系,再根据,且即可求出a,b,c的值.【详解】(1)初始数125可以产生出152,215,251,512,521这5个新初始数,这6个初始数的和为1776,故初始数125生成的终止数为1776(2)∵===81,同理:=81,=81∵∴81+81-81=324化简得则c(c-b)+a(b-c)=2∴(b-c)(a-c)=2∵a,b,c为正整数,故或又,且解得a=4,b=3,c=2或a=3,b=2,c=1故满足条件的初始数的值为或.【点睛】此题主要考查新定义运算的应用,解题的关键是熟知完全平方公式的应用及方程组的求解.23、;【解析】试题分析:本题考查了分式的化简求值,原式第二项约分后,两项通分并利用同分母分式的加法法则计算得到最简结果,把x=0代入计算即可求出值.解:原式=+===,当x=0时,原式=.24、(1)见解析;(2)点P、Q在AB、BC边上运动的过程中,∠QMC不变,∠QMC=60°,理由见解析;(3)120.【分析】(1)根据等边三角形的性质,利用SAS证明△ABQ≌△CAP即可;(2)由(1)可知△ABQ≌△CAP,所以∠BAQ=∠ACP,再根据三角形外角性质可求出∠QMC;(3)先证△ABQ≌△CAP,根据全等三角形的性质可得∠BAQ=∠ACP,再根据三角形外角性质可求出∠QMC;【详解】(1)证明:如图1,∵△ABC是等边三角形∴∠ABQ=∠CAP=60∘,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,∴△ABQ≌△CAP(SAS);(2)点P、Q在AB、BC边上运动的过程中,∠QMC不变,∠QMC=60°.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC是△ACM的外角,∴∠QMC=∠ACP+∠MAC=∠BAQ+∠MAC=∠BAC∵∠BAC=60°,∴∠QMC=60°;(3)如图2,∵△ABC是等边三角形∴∠ABQ=∠CAP=60∘,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,∴△ABQ≌△CAP(SAS);∴∠BAQ=∠ACP,∵∠QMC是△APM的外角,∴∠QMC=∠BAQ+∠APM,∴∠QMC=∠ACP+∠APM=180°−∠PAC=180°−60°=120°,故答案为120.【点睛】本题考查全等三角形的动点问题,熟练掌握等边三角形的性质得到全等三角形,并由三角形外角性质进行角度转换是解决本题的关键.25、(1)y=-0.1x+100(2)该商场销售甲50件,乙150件时,能获得最大利润.【分析】(1)根据题意即可列出一次函数,化简即可;(2)设甲的件数为x,那么乙的件数为:200-x,根据题意列出不等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论