版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届重庆市江北区数学八年级第一学期期末达标检测模拟试题题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列各组数中,勾股数的是()A.6,8,12 B.0.3,0.4,0.5 C.2,3,5 D.5,12,132.在平面直角坐标系中,点P(4,3)关于原点对称的点的坐标为()A.(﹣4,﹣3) B.(﹣4,3) C.(3,﹣4) D.(﹣3,4)3.如图,在△ABC中,AD为BC边上的中线,DE为△ABD中AB边上的中线,△ABC的面积为6,则△ADE的面积是()A.1 B. C.2 D.4.如图,△ABC中,∠C=90°,AD平分∠BAC,BC=10,BD=6,则点D到AB的距离是()A.4 B.5 C.6 D.75.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=()A.80° B.60° C.50° D.40°6.平面直角坐标系内,点A(-2,-3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是()组别
A型
B型
C型
O型
频率
0.4
0.35
0.1
0.15
A.16人 B.14人 C.4人 D.6人8.如图,点D,E分别在AC,AB上,BD与CE相交于点O,已知∠B=∠C,现添加下面的哪一个条件后,仍不能判定△ABD≌△ACE的是()A.AD=AE B.AB=AC C.BD=CE D.∠ADB=∠AEC9.要使二次根式有意义,字母x必须满足的条件是()A.x≤2 B.x<2 C.x≤-2 D.x<-210.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A. B. C. D.11.下列图形中对称轴条数最多的是()A.等边三角形 B.正方形 C.等腰三角形 D.线段12.以下列各组线段长为边,不能组成三角形的是()A.8cm,7cm,13cmB.6cm,6cm,12cmC.5cm,5cm,2cmD.10cm,15cm,17cm二、填空题(每题4分,共24分)13.一次函数与的部分自变量和对应函数值如下表:0123210123-3-113则关于的不等式的解集是______.14.分解因式:.15.如图,在平面直角坐标系中,点的坐标为,点为轴上一动点,以为边在的右侧作等腰,,连接,则的最小值是__________.16.如果x2>0,那么x>0,这是一个_________命题17.若分式方程有增根,则m=________.18.已知在中,,,点为直线上一点,连接,若,则_______________.三、解答题(共78分)19.(8分)某学校初二年级在元旦汇演中需要外出租用同一种服装若干件,已知在没有任何优惠的情况下,同时在甲服装店租用2件和乙服装店租用3件共需280元,在甲服装店租用4件和乙服装店租用一件共需260元.(1)求两个服装店提供的单价分别是多少?(2)若该种服装提前一周订货则甲乙两个租售店都可以给予优惠,具体办法如下:甲服装店按原价的八折进行优惠;在乙服装店如果租用5件以上,则超出5件的部分可按原价的六折进行优惠;设需要租用()件服装,选择甲店则需要元,选择乙店则需要元,请分别求出,关于的函数关系式;(3)若租用的服装在5件以上,请问租用多少件时甲乙两店的租金相同?20.(8分)某公司生产一种原料,运往A地和B地销售.如表记录的是该产品运往A地和B地供应量y1(kg)、y2(kg)与销售价格x(元)之间的关系:销售价格x(元)100150200300运往A地y1(kg)300250200100运往B地y2(kg)450350250n(1)请认真分析上表中所给数据,用你所学过的函数来表示其变化规律,并验证你的猜想,分别求出y1与x、y2与x的函数关系式;(2)用你求出的函数关系式完成上表,直接写出n=;(3)直接写出销售价格在元时,该产品运往A地的供应量等于运往B地的供应量.21.(8分)已知:y-2与x成正比例,且x=2时,y=4.(1)求y与x之间的函数关系式;(2)若点M(m,3)在这个函数的图象上,求点M的坐标.22.(10分)如图,某中学校园内有一块长为米,宽为米的长方形地块.学校计划在中间留一块边长为米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含的代数式表示)(2)当时,求绿化的面积.23.(10分)(1)计算:;(2)计算:;(3)解方程:;24.(10分)为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6分钟忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前行走,小亮取到借书证后骑单车原路原速前往图书馆,小亮追上姐姐后用单车带着姐姐一起前往图书馆.已知单车的速度是步行速度的3倍,如图是小亮和姐姐距家的路程y(米)与出发的时间x(分钟)的函数图象,根据图象解答下列问题:⑴小亮在家停留了分钟;⑵求小亮骑单车从家出发去图书馆时距家的路程y(米)与出发时间x(分钟)之间的函数关系式;⑶若小亮和姐姐到图书馆的实际时间为m分钟,原计划步行到达图书馆的时间为n分钟,则n-m=分钟.25.(12分)甲、乙两位同学5次数学成绩统计如表,他们的5次总成绩相同,小明根据他们的成绩绘制了尚不完整的统计图表,请同学们完成下列问题.其中,甲的折线图为虚线、乙的折线图为实线.甲、乙两人的数学成绩统计表第1次第2次第3次第4次第5次甲成绩9040704060乙成绩705070a70(1)a=,;(2)请完成图中表示乙成绩变化情况的折线;(3)S2甲=260,乙成绩的方差是,可看出的成绩比较稳定(填“甲”或“乙”).从平均数和方差的角度分析,将被选中.26.甲、乙两台机器共同加工一批零件,一共用了小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数(个)与甲加工时间之间的函数图象为折线,如图所示.(1)这批零件一共有个,甲机器每小时加工个零件,乙机器排除故障后每小时加工个零件;(2)当时,求与之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?
参考答案一、选择题(每题4分,共48分)1、D【解析】根据勾股定理的逆定理分别进行分析,从而得到答案.【详解】A、∵52+42≠62,∴这组数不是勾股数;B、∵0.32+0.42=0.52,但不是整数,∴这组数不是勾股数;C、∵2,3,5是无理数,∴这组数不是勾股数;D、∵52+122=132,∴这组数是勾股数.故选D.【点睛】此题主要考查了勾股数的定义,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则△ABC是直角三角形.2、A【分析】关于原点对称的两个点的横纵坐标都互为相反数,根据性质解答即可.【详解】解:点P(4,3)关于原点对称的点的坐标是(﹣4,﹣3),故选:A.【点睛】此题考查关于原点对称的两个点的坐标特点,掌握特点是解题的关键.3、B【分析】根据三角形的中线的性质,得△ADE的面积是△ABD的面积的一半,△ABD的面积是△ABC的面积的一半,由此即可解决问题.【详解】∵AD是△ABC的中线,∴S△ABD=S△ABC=1.∵DE为△ABD中AB边上的中线,∴S△ADE=S△ABD=.故选:B.【点睛】此题考查三角形的面积,三角形的中线的性质,解题的关键是掌握三角形的中线把三角形的面积分成了相等的两部分.4、A【分析】作DE⊥AB于E,由角平分线的性质可得点D到AB的距离DE=CD,根据已知求得CD即可.【详解】解:作DE⊥AB于E.∵∠C=90°,AD平分∠BAC,∴DE=CD,∵BC=10,BD=6,∴CD=BC-BD=10-6=1,∴点D到AB的距离DE=1.故选:A.【点睛】本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解答本题的关键.5、D【分析】首先利用三角形的内角和定理和等腰三角形的性质∠B,利用线段垂直平分线的性质易得AE=BE,∠BAE=∠B.【详解】解:∵AB=AC,∠BAC=100°,∴∠B=∠C=(180°﹣100°)÷2=40°,∵DE是AB的垂直平分线,∴AE=BE,∴∠BAE=∠B=40°,故选D.6、C【分析】根据各象限内点的坐标特征进一步解答即可.【详解】由题意得:点A的横坐标与纵坐标皆为负数,∴点A在第三象限,故选:C.【点睛】本题主要考查了直角坐标系中点的坐标特征,熟练掌握相关概念是解题关键.7、A【解析】根据频数、频率和总量的关系:频数=总量×频率,得本班A型血的人数是:40×0.4=16(人).故选A.8、D【分析】用三角形全等的判定知识,便可求解.【详解】解:已知∠B=∠C,∠BAD=∠CAE,若添加AD=AE,可利用AAS定理证明△ABE≌△ACD,故A选项不合题意;若添加AB=AC,可利用ASA定理证明△ABE≌△ACD,故B选项不合题意;若添加BD=CE,可利用AAS定理证明△ABE≌△ACD,故C选项不合题意;若添加∠ADB=∠AEC,没有边的条件,则不能证明△ABE≌△ACD,故D选项合题意.故选:D.【点睛】熟悉全等三角形的判定定理,是必考的内容之一.9、A【解析】∵要使二次根式有意义,∴2-x≥0,∴x≤2.故选A.10、A【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.11、B【分析】根据对称轴的定义逐一判断出每种图形的对称轴条数,然后即可得出结论.【详解】解:A.等边三角形有3条对称轴;B.正方形有4条对称轴;C.等腰三角形有1条对称轴;D.线段有2条对称轴.∵4>3>2>1∴正方形的对称轴条数最多故选B.【点睛】此题考查的是轴对称图形对称轴条数的判断,掌握轴对称图形的定义是解决此题的关键.12、B【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,得A、8+7>13,能组成三角形;B、6+6=12,不能组成三角形;C、2+5>5,能组成三角形;D、10+15>17,能组成三角形.故选:B.【点睛】考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.二、填空题(每题4分,共24分)13、【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】根据表可得y1=kx+b中y随x的增大而减小;
y1=mx+n中y随x的增大而增大.且两个函数的交点坐标是(1,1).
则当x<1时,kx+b>mx+n,
故答案为:x<1.【点睛】本题考查了一次函数与一元一次不等式,函数的性质,正确确定增减性以及交点坐标是关键.14、.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式后继续应用平方差公式分解即可:.考点:提公因式法和应用公式法因式分解.15、3.【分析】如图,作DH⊥x于H,利用全等三角形的判定与性质证明点D在直线y=x-3上运动,O关于直线y=x-3的对称点E′,连接AE′,求出AE′的长即可解决问题.【详解】如图,作DH⊥x轴于H.∵∠AOB=∠ABD=∠BHD=90°,∴∠ABO+∠BAO=90°,∠ABO+∠DBH=90°,∴∠BAO=∠DBH,∵AB=DB,∴△ABO≌△BDH(AAS),∴OA=BH=3,OB=DH,∴HD=OH-3,∴点D在直线y=x-3上运动,作O关于直线y=x-3的对称点E′,连接AE′交直线y=x-3于D′,连接OD′,则OD′=D′E′根据“两点之间,线段最短”可知此时OD+AD最小,最小值为AE′,∵O(0,0),O关于直线y=x-3的对称点为E′,∴E′(3,-3),∵A(0,3),∴AE′=3,∴OD+AD的最小值是3,故答案为:3.【点睛】本题考查全等三角形的判定和性质,等腰直角三角形的判性质,利用轴对称解决最短路径问题,一次函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考选择题中的压轴题.16、假【分析】根据有理数的乘方法则即可得到答案.【详解】解:如果x2>0,那么x>0,是假命题,例如:(-2)2=4>0,-2<0;故答案为:假【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.17、-1【分析】首先根据分式方程的解法求出x的值,然后根据增根求出m的值.【详解】解:解方程可得:x=m+2,根据方程有增根,则x=1,即m+2=1,解得:m=-1.故答案为:-1【点睛】本题考查分式方程的增根,掌握增根的概念是本题的解题关键.18、60°或30°【分析】分点D在线段AC上和点D在射线AC上两种情况,画出图形,利用等腰直角三角形的性质和角的和差计算即可.【详解】解:当点D在线段AC上时,如图1,∵,,∴,∵,∴;当点D在射线AC上时,如图2,∵,,∴,∵,∴.故答案为:60°或30°.【点睛】本题主要考查了等腰直角三角形的性质,属于基础题型,正确分类画出图形、熟练掌握等腰直角三角形的性质是解题关键.三、解答题(共78分)19、(1)甲店每件租金50元,乙店每件租金60元;(2),;(3)租用30件时,甲乙两店的租金相同【分析】(1)设甲店每件租金x元,乙店每件租金y元,根据“在甲服装店租用2件和乙服装店租用3件共需280元,在甲服装店租用4件和乙服装店租用一件共需260元”列出方程组进行求解即可;(2)根据甲、乙两店的优惠政策进行求解即可得;(3)根据两店租金相同,列出方程求解即可.【详解】解:(1)设甲店每件租金x元,乙店每件租金y元,由题意可得,解得,答:甲店每件租金50元,乙店每件租金60元.(2)甲店:,乙店:当不超过5件时,则有当超过5件时,则有,综上:.(3)由,解得,答:租用30件时,甲乙两店的租金相同.【点睛】本题考查了二元一次方程组的实际应用,一次函数的实际应用问题,解题的关键是根据题意列出方程或函数关系式.20、(1)y1=﹣x+400,y2=﹣2x+61;(2)1;(3)21【分析】(1)通过观察发现,y1、y2都是x的一次函数,利用待定系数法即可解决;(2)利用(1)的结论令,求出的值即为n的值;(3)根据(1)的结论,令,列方程解答即可.【详解】解:(1)设y1与x的函数关系式为y1=k1x+b1,根据题意有解得∴y1=﹣x+400,验证:当时,;当时,设y2与x的函数关系式为y2=k2x+b2,解得∴y2=﹣2x+61;验证:当时,;(2)当x=300时,n=y2=﹣2x+61=﹣2×300+61=1.故答案为:1;(3)根据题意得:﹣x+400=﹣2x+61,解得x=21.答:销售价格在21元时,该产品运往A地的供应量等于运往B地的供应量.故答案为:21.【点睛】本题主要考查一次函数的应用,掌握待定系数法和一元一次方程的解法是解题的关键.21、(1)y=x+2;(2)M(1,3).【分析】(1)根据正比例函数的定义设y-2=kx(k≠0),然后把x、y的值代入求出k的值,再整理即可得解;(2)将点M(m,3)的坐标代入函数解析式得到关于m的方程即可求解.【详解】解:(1)设y-2=kx(k≠0),把x=2,y=4代入求得k=1,∴函数解析式是y=x+2;(2)∵点M(m,3)在这个函数图象上,∴m+2=3,解得:m=1,∴点M的坐标为(1,3).【点睛】本题考查了待定系数法求一次函数解析式,注意利用正比例函数的定义设出函数关系式.22、(1)平方米;(2)54平方米.【分析】(1)绿化的面积=长方形的面积-边长为米的正方形的面积,据此列式计算即可;(2)把a、b的值代入(1)题中的代数式计算即可.【详解】解:(1)平方米;(2)当时,.所以绿化的面积为54平方米.【点睛】本题主要考查了整式乘法的应用,正确列式、熟练掌握运算法则是解题的关键.23、(1)-1;(2);(3)无解【分析】(1)先算乘方,再算乘除,后算加减即可;(2)先算括号里,再根据二次根式的除法法则计算;(3)两边都乘以x-2,化为整式方程求解,然后检验.【详解】(1)原式==-2-1+2=-1;(2)原式====;(3)两边都乘以x-2,得x-1-3(x-2)=1,解得x=2,检验:当x=2时,x-2=0,∴x=2是原方程的增根,原方程无解.【点睛】本题考查了实数的混合运算,二次根式的混合运算,以及分式方程的解法,熟练掌握运算法则以及分式方程的解法是解答本题的关键.24、(1)2;(2)y=150x﹣1500(10≤x≤1);(3)1分钟.【分析】(1)根据路程与速度、时间的关系,首先求出C、B两点的坐标,即可解决问题;(2)根据C、D两点坐标,利用待定系数法即可解决问题;(3)求出原计划步行到达图书馆的时间为n,即可解决问题.【详解】解:(1)步行速度:10÷6=50m/min,单车速度:3×50=150m/min,单车时间:100÷150=20min,1﹣20=10,∴C(10,0),∴A到B是时间==2min,∴B(8,0),∴BC=2,∴小亮在家停留了2分钟.故答案为:2;(2)设y=kx+b,过C、D(1,100),∴,解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 跟岗学习心得感悟
- 平台经济与产业链
- 我们邻近的地区和国家-2023年中考地理总复习试题探究与变式训练(原卷版)
- 安全知识竞赛应用题
- 2024年商业交换网项目投资申请报告代可行性研究报告
- 2024年柠檬酸甘油二酸酯项目资金需求报告代可行性研究报告
- 2024年LNG工艺包及装置项目投资申请报告代可行性研究报告
- 强化技术保障作用 铸牢生产安全基础
- 幼儿园年终老师工作总结(35篇)
- 劳务劳动合同范本(30篇)
- 食源性疾病培训内容知识
- LED显示屏拆除方案
- 教科版六年级科学上册期中测试卷
- 项目管理与风险管理考核试卷
- 2024年中级经济师(金融)《专业知识与实务》考前必刷必练题库500题(含真题、必会题)
- 2024年度假区(阳澄湖镇)国(集体)公司公开招聘工作人员高频难、易错点500题模拟试题附带答案详解
- 浙江省杭州市五校联考2025届英语高三第一学期期末复习检测试题含解析
- 医院法律风险防范措施计划
- 高层次和急需紧缺人才引进报名表
- 技术转让合同
- 形势与政策智慧树知到答案2024年黑龙江农业工程职业学院
评论
0/150
提交评论