2024-2025学年河南省郑州市名校数学九年级第一学期开学达标检测模拟试题【含答案】_第1页
2024-2025学年河南省郑州市名校数学九年级第一学期开学达标检测模拟试题【含答案】_第2页
2024-2025学年河南省郑州市名校数学九年级第一学期开学达标检测模拟试题【含答案】_第3页
2024-2025学年河南省郑州市名校数学九年级第一学期开学达标检测模拟试题【含答案】_第4页
2024-2025学年河南省郑州市名校数学九年级第一学期开学达标检测模拟试题【含答案】_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2024-2025学年河南省郑州市名校数学九年级第一学期开学达标检测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形2、(4分)已知二次函数(为常数)的图象与轴的一个交点为,则关于的一元二次方程的两实数根是()A., B., C., D.,3、(4分)学校国旗护卫队成员的身高分布加下表:身高/cm159160161162人数71099则学校国旗护卫队成员的身高的众数和中位数分别是()A.160和160 B.160和160.5 C.160和161 D.161和1614、(4分)若方程组的解为,则直线y=mx+n与y=﹣ex+f的交点坐标为()A.(﹣4,6) B.(4,6) C.(4,﹣6) D.(﹣4,﹣6)5、(4分)如图,将长方形纸片ABCD折叠,使点B与点D重合,折痕为EF,已知AB=6cm,BC=18cm,则Rt△CDF的面积是()A.27cm2 B.24cm2 C.22cm2 D.20cm26、(4分)在Rt△ABC中,AC=BC,点D为AB中点.∠GDH=90°,∠GDH绕点D旋转,DG,DH分别与边AC,BC交于E,F两点.下列结论:①AE+BF=AC,②AE2+BF2=EF2,③S四边形CEDF=S△ABC,④△DEF始终为等腰直角三角形.其中正确的是()A.①②③④ B.①②③ C.①④ D.②③7、(4分)下列调查中,不适宜用普查的是()A.了解全班同学每周体育锻炼的时间; B.了解全市中小学生每天的零花钱;C.学校招聘教师,对应聘人员面试; D.旅客上飞机前的安检.8、(4分)在“爱我汾阳”演讲赛中,小明和其他6名选手参加决赛,他们决赛的成绩各不相同,小明想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名同学成绩的()A.平均数 B.众数 C.中位数 D.方差二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为__________.10、(4分)已知为分式方程,有增根,则_____.11、(4分)如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是.12、(4分)如图,四边形中,,,为上一点,分别以,为折痕将两个角(,)向内折起,点,恰好都落在边的点处.若,,则________.13、(4分)一张矩形纸片ABCD,已知,.小明按所给图步骤折叠纸片,则线段DG长为______.三、解答题(本大题共5个小题,共48分)14、(12分)如图1,是的边上的中线.(1)①用尺规完成作图:延长到点,使,连接;②若,求的取值范围;(2)如图2,当时,求证:.15、(8分)如图1,以直线MN上的线段BC为边作正方形ABCD,CH平分∠DCN,点E为射线BN上一点,连接AE,过点E作AE的垂线交射线CH于点F,探索AE与EF的数量关系。(1)阅读下面的解答过程。并按此思路完成余下的证明过程当点E在线段BC上,且点E为BC中点时,AB=EF理由如下:取AB中点P,達接PE在正方形ABCD中,∠B=∠BCD=90°,AB=BC∴△BPE等腰三角形,AP=BC∴∠BPB=45°∴∠APBE=135°又因为CH平分∠DCN∴∠DCF=45°∴∠ECF=135°∴∠APE=∠ECF余下正明过程是:(2)当点E为线段AB上任意一点时,如图2,结论“AE=EF”是否成立,如果成立,请给出证明过程;(3)当点E在BC的延长线时,如图3,结论“AE=EF”是否仍然成立,如果成立,请在图3中画出必要的辅助线(不必说明理由)。16、(8分)某商店计划购进A、B两种型号的电动自行车共30辆,其中A型电动自行车不少于20辆,A、B两种型号电动自行车的进货单价分别为2500元、3000元,售价分别为2800元、3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.(1)求出y与m之间的函数关系式;(2)该商店如何进货才能获得最大利润?此时最大利润是多少元?17、(10分)如图,在中,,点M、N分别在BC所在的直线上,且BM=CN,求证:△AMN是等腰三角形.18、(10分)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.(1)求反比例函数和一次函数的解析式;(2)点P是x轴上的一动点,当PA+PB最小时,求点P的坐标;(3)观察图象,直接写出不等式的解集.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,将长方形ABCD绕点A顺时针旋转到长方形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=125°,则∠α的大小是_______度.20、(4分)如果一组数据x1,x2,…,xn的方差是4,则另一组数据x1+3,x2+3,…,xn+3的方差是_____.21、(4分)如图,直线,直线分别交,,于点,,,直线分别交,,于点,,.若,则______.22、(4分)顺次连接矩形ABCD各边中点,所得四边形形状必定是__________.23、(4分)直线y=x+1与y=-x+7分别与x轴交于A、B两点,两直线相交于点C,则△ABC的面积为___.二、解答题(本大题共3个小题,共30分)24、(8分)如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为1.(1)当m=1,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.25、(10分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组50≤x<606第2组60≤x<708第3组70≤x<8014第4组80≤x<90a第5组90≤x<10010请结合图表完成下列各题(1)①求表中a的值;②频数分布直方图补充完整;(2)小亮想根据此直方图绘制一个扇形统计图,请你帮他算出成绩为90≤x<100这一组所对应的扇形的圆心角的度数;(3)若测试成绩不低于80分为优秀,则本次测试的优秀率(百分比)是多少?26、(12分)我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】试题分析:A.四个角相等的四边形是矩形,为真命题,故A选项不符合题意;B.对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;C.对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;D.对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.故选C.考点:命题与定理.2、B【解析】

先求出二次函数图象的对称轴,然后利用二次函数图象的对称性求出图象与x轴的另一个交点坐标,最后根据二次函数与x轴的交点的横坐标与一元二次方程的根的关系即可得出结论.【详解】解:二次函数图象的对称轴为直线x=∵图象与轴的一个交点为,∴图象与x轴的另一个交点坐标为(2,0)∴关于的一元二次方程的两实数根是,故选B此题考查的是求二次函数图象与x轴的交点坐标和求一元二次方程的根,掌握二次函数图象的对称性和二次函数与x轴的交点的横坐标与一元二次方程的根的关系是解决此题的关键.3、C【解析】

众数是一组数据中出现次数最多的数据;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.根据众数和中位数的概念计算可得解.【详解】解:数据160cm出现了10次,次数最多,众数是:160cm;

排序后位于中间位置的是161cm,中位数是:161cm.

故选:C.本题为统计题,考查众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.4、B【解析】

原方程组可化为,∵方程的解为,∴直线y=mx+n与y=﹣ex+f的交点坐标为(4,6).故选B.本题考查二元一次方程组与一次函数的关系.两条直线的交点坐标即为这两条直线的解析式组成的方程组的解.5、B【解析】

求Rt△CDF的面积,CD边是直角边,有CD=AB=6cm,只要求出边FC即可.由于点B与点D重合,所以有FD=BF=BC-FC=18-FC,利用勾股定理可求出FC了.【详解】解:设FC=x,Rt△CDF中,CD=6cm,FC=x,又折痕为EF,

∴FD=BF=BC-FC=18-FC=18-x,

Rt△CDF中,DF2=FC2+CD2,

即(18-x)2=x2+62,

解得x=8,

∴面积为故选:B.解决本题的关键是根据折叠及矩形的性质利用勾股定理求得CF的长度;易错点是得到DF与CF的长度和为18的关系.6、A【解析】

连接CD根据等腰直角三角形的性质就可以得出△ADE≌△CDF,就可以得出AE=CF,进而得出CE=BF,就有AE+BF=AC,由勾股定理就可以求出结论.【详解】连接CD,∵AC=BC,点D为AB中点,∠ACB=90°,

∴AD=CD=BD=AB.∠A=∠B=∠ACD=∠BCD=45°,∠ADC=∠BDC=90°.

∴∠ADE+∠EDC=90°,

∵∠EDC+∠FDC=∠GDH=90°,

∴∠ADE=∠CDF.

在△ADE和△CDF中,∴△ADE≌△CDF(ASA),

∴AE=CF,DE=DF,S△ADE=S△CDF.

∵AC=BC,

∴AC-AE=BC-CF,

∴CE=BF.

∵AC=AE+CE,

∴AC=AE+BF.

∵DE=DF,∠GDH=90°,

∴△DEF始终为等腰直角三角形.

∵CE1+CF1=EF1,

∴AE1+BF1=EF1.

∵S四边形CEDF=S△EDC+S△EDF,

∴S四边形CEDF=S△EDC+S△ADE=S△ABC.

∴正确的有①②③④.

故选A.本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,解题关键是证明△ADE≌△CDF.7、B【解析】

由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A、了解全班同学每周体育锻炼的时间,数量不大,宜用全面调查,故A选项错误;B、了解全市中小学生每天的零花钱,数量大,不宜用全面调查,故B选项正确;C、学校招聘教师,对应聘人员面试,必须全面调查,故C选项错误;D、旅客上飞机前的安检,必用全面调查,故D选项不正确.故选B.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8、C【解析】

7人成绩的中位数是第4名的成绩,参赛选手想要知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有7个人,且他们的分数互不相同,第4名的成绩是中位数,要判断是否进入前4名,故应知道中位数是多少,故选:C.考查了中位数的定义,中位数的实际应用,熟记中位数的定义是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、7【解析】

试题分析:根据题意得,等腰△ABC中,OA=OB=3,由等腰三角形的性质可得OC⊥AB,根据勾股定理可得OC=7,又因OM=OC=7,于是可确定点M对应的数为7.考点:勾股定理;实数与数轴.10、【解析】

去分母得,根据有增根即可求出k的值.【详解】去分母得,,当时,为增根,故答案为:1.本题考查了分式方程的问题,掌握解分式方程的方法是解题的关键.11、【解析】

试题分析:连接DB,BD与AC相交于点M,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB.∵∠DAB=60°,∴△ADB是等边三角形.∴DB=AD=1,∴BM=∴AM=∴AC=.同理可得AE=AC=()2,AG=AE=()3,…按此规律所作的第n个菱形的边长为()n-112、【解析】

先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC-BH=BC-AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=,所以EF=.【详解】解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,

∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,

∴AB=2EF,DC=DF+CF=8,

作DH⊥BC于H,

∵AD∥BC,∠B=90°,

∴四边形ABHD为矩形,

∴DH=AB=2EF,HC=BC-BH=BC-AD=5-3=2,

在Rt△DHC中,DH=,∴EF=DH=.故答案为:.本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.13、【解析】

首先证明△DEA′是等腰直角三角形,求出DE,再说明DG=GE即可解决问题.【详解】解:由翻折可知:DA′=A′E=4,∵∠DA′E=90°,∴DE=,∵A′C′=2=DC′,C′G∥A′E,∴DG=GE=,故答案为:.本题考查翻折变换,等腰直角三角形的判定和性质,平行线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.三、解答题(本大题共5个小题,共48分)14、(1)①详见解析;②1<<5;(2)详见解析【解析】

(1)①首先利用尺规作图,使得DE=AD,在连接CE,②首先利用≌可得AB=CE,在中,确定AE的范围,再根据AE=2AD,来确定AD的范围.(2)首先延长延长到点,使,连接和BE,结合,可证四边形是平行四边形,再根据,可得四边形是矩形,因此可证明.【详解】(1)①用尺规完成作图:延长到点,使,连接;②∵,,∴≌∴∴6-4<<6+4,即2<<10又∵∴1<<5(2)延长到点,使,连接∵∴四边形是平行四边形∵∴四边形是矩形∴∴.本题主要考查直角三角形斜边中线是斜边的一半,关键在于构造矩形,利用矩形的对角线相等.15、(1)见解析;(2)成立,理由见解析;(3)成立,图形见解析【解析】

(1)取AB中点P,连接PE,得出∠APE=∠ECF,再根据同角的余角相等得出∠BAE=∠CEF,进而得出ΔAPE≌ΔECF,求出结果;(2)在AB上截取BN=BE,类比(1)的证明方法即可得出结果;(3)在BA延长线上取一点Q,使BQ=BE,连接EQ,类比(1)的证明方法即可得出结果.【详解】(1)余下证明过程为:∵∠ABE=90°∴∠BAE+∠AEB=90°∵∠AEF=90°∴∠BAE=∠CEF∴ΔAPE≌ΔECF∴AE=EF.(2)成立证明:在AB上截取BN=BE在正方形ABCD中,∠B=∠BCD=90°,AB=BC∴ΔBNE为等腰三角形,AN=EC∴∠BNE=45°∴∠ANE=135°又因为GH平分∠DCN∴∠DCF=45°∴∠ECF=135°∴∠ANE=∠ECF由(1)得∠BAE+∠AEB=90°,∠AEB+∠CEF=90°∴∠BAE=∠CEF∴ΔANE≌ΔECF∴AE=EF(3)如图证明:在BA延长线上取一点Q,使BQ=BE,连接EQ,

在正方形ABCD中,

∵AB=BC,

∴AQ=CE.

∵∠B=90°,

∴∠Q=45°.

∵CH平分∠DCN,∠DCN=∠DCB=90°,

∴∠HCE=∠Q=45°.

∵AD∥BE,

∴∠DAE=∠AEB.

∵∠AEF=∠QAD=90°,

∴∠QAE=∠CEF.

∴△QAE≌△CEF.

∴AE=EF.本题是四边形综合题,主要考查了正方形的性质,全等三角形的性质和判定,平行线的性质,解题的关键是利用同角或等角的余角相等.16、(1)=﹣200+15000(20≤m<30);(2)购进A型电动自行车20辆,购进B型10辆,最大利润是11000元.【解析】

(1)利润=一辆A型电动自行车的利润×A型电动自行车的数量+一辆B型电动自行车的利润×B型电动自行车的数量,依此列式化简即可;(2)根据一次函数的性质,结合自变量的取值范围即可求解;【详解】解:(1)计划购进A型电动自行车辆,B型电动自行车(30-)辆,=(2800-2500)m+(3500﹣3000)(30﹣m),=﹣200+15000(20≤m<30),(2)∵20≤<30,且随的增大而减小可得,=20时,有最大值,=﹣200×20+15000=11000,购进A型电动自行车20辆,购进B型10辆,最大利润是11000元.本题考查了一次函数的应用,解题的关键是求出y与m之间的函数关系式.17、详见解析【解析】

根据已知条件易证△ABM≌△ACN,由全等三角形的性质可得AM=AN,即可证得△AMN是等腰三角形.【详解】证明:∵AB=AC,∴∠ABC=∠ACB,∴∠ABM=∠ACN,在△ABM和△ACN中,∴△ABM≌△ACN,∴AM=AN,即△AMN是等腰三角形.本题考查了全等三角形的判定与性质及等腰三角形的判定,利用全等三角形的的判定证得△ABM≌△CAN是解决问题的关键.18、(1)反比例函数的解析式为;一次函数的解析式为y=-x+5;(2)点P的坐标为(,0);(3)x<0或1≤x≤4【解析】

(1)将点A(1,4)代入可得m的值,求得反比例函数的解析式;根据反比例函数解析式求得点B坐标,再由A、B两点的坐标可得一次函数的解析式;(2)作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,根据B的坐标求得B′的坐标,然后根据待定系数法求得直线AB′的解析式,进而求得与x轴的交点P即可.(3)根据图象得出不等式的解集即可。【详解】解:(1)把A(1,4)代入,得:m=4,

∴反比例函数的解析式为;把B(4,n)代入,得:n=1,

∴B(4,1),

把A(1,4)、(4,1)代入y=kx+b,得:∴一次函数的解析式为y=-x+5;(2)如图,作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,

∵B(4,1),

∴B′(4,-1),

设直线AB′的解析式为y=px+q,解得∴直线AB′的解析式为令y=0,得解得∴点P的坐标为(,0)(3)根据图象得当x<0或1≤x≤4时,一次函数y=-x+5的图象在反比例函数的上方。∴不等式的解集为x<0或1≤x≤4。本题主要考查反比例函数和一次函数的交点及待定系数法求函数解析式、轴对称-最短路线问题,掌握图象的交点的坐标满足两个函数解析式是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、35.【解析】

利用四边形内角和得到∠BAD’,从而得到∠α【详解】如图,由矩形性质得到∠BAD’+∠α=90°;因为∠2=∠1=125°,所以∠BAD’=180°-∠2=55°,所以∠α=90°-55°=35°,故填35本题主要考查矩形性质和四边形内角和性质等知识点,本题关键在于找到∠2与∠BAD互补20、1【解析】试题分析:数据x1,x2,…,xn的平均数设为a,则数据x1+3,x2+3,…,xn+3的平均数为a+3,根据方差公式:S2=[(x1-a)2+(x2-a)2+…(xn-a)2]=1.则数据x1+3,x2+3,…,xn+3的方差S′2={[(x1+3)-(a+3)]2+[(x2+3)-(a+3)]2+…(xn+3)-(a+3)]2}=[(x1-a)2+(x2-a)2+…(xn-a)2]=1.故答案为1.点睛:此题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计算即可.21、【解析】

先由,根据比例的性质可得,再根据平行线分线段成比例定理求解即可.【详解】解:∴故答案为。本题考查了平行线分线段成比例定理,掌握三条平行线截两条直线,所得的对应线段成比例是解题的关键。22、菱形【解析】【分析】连接BD,AC,根据矩形性质和三角形中位线性质,可证四条边相等,可得菱形.【详解】如图连接BD,AC由矩形性质可得AC=BD,因为,E,F,G,H是各边的中点,所以,根据三角形中位线性质可得:HG=EF=BD,EH=FG=AC所以,EG=EF=EF=FG,所以,所得四边形EFGH是菱形.故答案为:菱形【点睛】本题考核知识点:矩形性质,菱形判定.解题关键点:由三角形中位线性质证边相等.23、16【解析】

在y=x+1中,令y=0,得x+1=0,解得x=−1,∴点A的坐标为(−1,0),在y=−x+7中,令y=0,得−x+7=0,解得x=7,∴点B的坐标为(7,0),联立两直线解析式得,解得,∴点C的坐标为(3,4);即点C的纵坐标为4∵AB=7−(−1)=8,∴S△ABC=×8×4=16.故答案为16.二、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论