版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省黄石市还地桥镇南湾初级中学数学八年级第一学期期末质量跟踪监视模拟试题期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图所示,已知点A(﹣1,2)是一次函数y=kx+b(k≠0)的图象上的一点,则下列判断中正确的是()A.y随x的增大而减小 B.k>0,b<0C.当x<0时,y<0 D.方程kx+b=2的解是x=﹣12.下列计算正确的是()A. B.C. D.3.下列函数中,随值增大而增大的是:①;②;③;④;⑤;⑥()A.①②③ B.③④⑤ C.②④⑤ D.①③⑤4.已知3a=5,9b=10,则A.50 B.-5 C.2 D.255.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中正确的是().①小明家和学校距离1200米;②小华乘坐公共汽车的速度是240米/分;③小华乘坐公共汽车后7:50与小明相遇;④小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,他们可以同时到达学校.A.①③④ B.①②③ C.①②④ D.①②③④6.关于的分式方程的解是正数,则的取值范围是()A.且 B. C.且 D.7.若,则的值为()A. B. C. D.8.下列运算,正确的是()A. B. C. D.9.若等腰三角形的周长为,其中一边为,则该等腰三角形的底边长为()A. B.或 C.或 D.10.一次函数的图象经过点,则该函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(每小题3分,共24分)11.如图,△ABC中,∠BAC=70°,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC=_____度.12.如图,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第2个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第3个等腰Rt△ADE,…,依此类推,则第2018个等腰直角三角形的斜边长是___________.13.如图,四边形ABCD中,∠A=90°,AB=2,AD=,CD=3,BC=5,则四边形ABCD的面积是______.14.直角三角形的两边长分别为3和5,则第三条边长是________.15.在平面直角坐标系中,点A(﹣1,0)、B(3,0)、C(0,2),当△ABC与△ABD全等时,则点D的坐标可以是_____.16.方程的解是________.17.如图,在中,的中垂线与的角平分线交于点,则四边形的面积为____________18.己知点,,点在轴上运动,当的值最小时,点的坐标为___________.三、解答题(共66分)19.(10分)在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为______;(2)将△AOB向左平移3个单位长度,再向上平移2个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,△AOB边AB上有一点P的坐标为(a,b),则平移后对应点P1的坐标为______.20.(6分)如图,在四边形中,,,,分别以点为圆心,大于的长为半径作弧,两弧交于点,作射线交于点,交于点.若点是的中点.(1)求证:;(2)求的长.21.(6分)阅读理解在平面直角坐标系中,两条直线,①当时,,且;②当时,.类比应用(1)已知直线,若直线与直线平行,且经过点,试求直线的表达式;拓展提升(2)如图,在平面直角坐标系中,的顶点坐标分别为:,试求出边上的高所在直线的表达式.22.(8分)如图,已知点在同一直线上,∥,且,,求证:∥.23.(8分)A、B两车从相距360千米的甲、乙两地相向匀速行驶,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图所示,表示的是B车,表示的是A车.(1)汽车B的速度是多少?(2)求、分别表示的两辆汽车的s与t的关系式.(3)行驶多长时间后,A、B两车相遇?(4)什么时刻两车相距120千米?24.(8分)2019年8月,第18届世界警察和消防员运动会在成都举行.我们在体育馆随机调查了部分市民当天的观赛时间,并用得到的数据绘制了如下不完整的统计图,根据图中信息完成下列问题:(1)将条形统计图补充完整;(2)求抽查的市民观赛时间的众数、中位数;(3)求所有被调查市民的平均观赛时间.25.(10分)计算:;26.(10分)如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为.(1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题?(2)已知为优三角形,,,,①如图1,若,,,求的值.②如图2,若,求优比的取值范围.(3)已知是优三角形,且,,求的面积.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据一次函数的性质判断即可.【详解】由图象可得:A、y随x的增大而增大;B、k>0,b>0;C、当x<0时,y>0或y<0;D、方程kx+b=2的解是x=﹣1,故选:D.【点睛】考查了一次函数与一元一次方程的关系,一次函数图象与系数的关系,正确的识别图象是解题的关键.2、C【解析】直接利用同底数幂的乘除法运算法则、合并同类项法则分别化简求出答案.【详解】A.,故此项错误;B.,故此项错误;C.,故此项正确;D.,故此项错误.故选:C【点睛】本题是考查计算能力,主要涉及同底数幂的乘除法运算法则、合并同类项法则,掌握这些运算法则是解题的关键.3、D【分析】根据一次函数的性质对各小题进行逐一分析即可.【详解】解:一次函数y=kx+b,当k>0时,y随x值增大而增大,①,k=8>0,满足;②,k=-5<0,不满足;③,k=>0,满足;④,k=<0,不满足;⑤,k=9>0,满足;⑥,k=-10<0,不满足;故选D.【点睛】本题考查的是一次函数的性质,熟知一次函数的增减性与系数k的关系是解答此题的关键.4、A【解析】根据同底数幂的乘法的性质的逆用,先整理成已知条件的形式,然后代入数据计算即可.【详解】∵9b=32b,∴3a+2b=3a⋅32b=5×10=50.故选:A.【点睛】同底数幂的乘法.5、D【解析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可得,小明家和学校距离为1200米,故①正确,小华乘坐公共汽车的速度是1200÷(13﹣8)=240米/分,故②正确,480÷240=2(分),8+2=10(分),则小华乘坐公共汽车后7:50与小明相遇,故③正确,小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,小华从家到学校的所用时间为:1200÷100=12(分),则小华到校时间为8:00,小明到校时间为8:00,故④正确,故选:D.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.6、A【分析】根据分式方程的解为正数,并且分母不为零,可得到满足条件的m的范围.【详解】解:去分母得,m−3=x−1,解得x=m−2;∵关于x的分式方程的解为正数,∴m−2>0,∴m>2,∵x−1≠0,∴x≠1,即m≠3,∴的取值范围是m>2且m≠3,故选:A.【点睛】本题考查了分式方程的解:使分式方程左右两边成立的未知数的值叫分式方程的解,解答本题时,易漏掉m≠3,这是因为忽略了x−1≠0这个隐含的条件而造成的,这应引起同学们的足够重视.7、A【解析】试题解析:设故选A.8、D【分析】根据合并同类项法则、同底数幂的乘法和同底数幂的除法逐一判断即可.【详解】解:A.,故本选项错误;B.,故本选项错误;C.,故本选项错误;D.,故本选项正确.故选D.【点睛】此题考查的是合并同类项和幂的运算性质,掌握合并同类项法则、同底数幂的乘法和同底数幂的除法是解决此题的关键.9、C【分析】分底为7cm和腰为7cm两种情况进行讨论,再根据三角形的三边关系进行验证.【详解】分两种情况讨论:①当底为7cm时,此时腰长为4cm和4cm,满足三角形的三边关系;②当腰为7cm时,此时另一腰为7cm,则底为1cm,满足三角形的三边关系;综上所述:底边长为1cm或7cm.故选:C.【点睛】本题考查了等腰三角形的性质及三角形的三边关系,分两种情况讨论是解答本题的关键.10、A【分析】根据题意,易得k﹤0,结合一次函数的性质,可得答案.【详解】解:∵一次函数的图象经过点,∴0=-k-2∴k=-2,∴k<0,b<0,
即函数图象经过第二,三,四象限,
故选A.【点睛】本题考查一次函数的性质,注意一次项系数与函数的增减性之间的关系.二、填空题(每小题3分,共24分)11、35【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,再根据角平分线的定义可得∠OBC=∠ABC,∠OCE=∠ACE,然后整理可得∠BOC=∠BAC.【详解】解:由三角形的外角性质,∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,∵∠ABC的平分线与∠ACB的外角平分线交于点O,∴∠OBC=∠ABC,∠OCE=∠ACE,∴(∠BAC+∠ABC)=∠BOC+∠ABC,∴∠BOC=∠BAC,∵∠BAC=70°,∴∠BOC=35°,故答案为:35°.【点睛】本题考查了三角形的内角和定理、三角形的外角性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质,要注意整体思想的利用.12、()2018【解析】首先根据△ABC是腰长为1的等腰直角三形,求出△ABC的斜边长是,然后根据以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,求出第2个等腰直角三角形的斜边长是多少;再根据以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,求出第3个等腰直角三角形的斜边长是多少,推出第2017个等腰直角三角形的斜边长是多少即可.【详解】解:∵△ABC是腰长为1的等腰直角三形,
∴△ABC的斜边长是,第2个等腰直角三角形的斜边长是:×=()2,第3个等腰直角三角形的斜边长是:()2×=()3,…,
∴第2012个等腰直角三角形的斜边长是()2018.故答案为()2018.【点睛】本题考查勾股定理和等腰三角形的特征和应用,解题关键是要熟练掌握勾股定理,注意观察总结出规律.13、【分析】连接BD,根据勾股定理求出BD,再根据勾股定理逆定理证明,在计算面积即可;【详解】连接BD,∵∠A=90°,AB=2,AD=,∴,又∵CD=3,BC=5,∴,∴,∴.故答案是:.【点睛】本题主要考查了勾股定理和勾股定理逆定理,准确分析计算是解题的关键.14、4或【分析】由于此题中直角三角形的斜边不能确定,故应分5是直角三角形的斜边和直角边两种情况讨论.【详解】∵直角三角形的两边长分别为3和5,∴①当5是此直角三角形的斜边时,设另一直角边为x,则x==4;②当5是此直角三角形的直角边时,设另一直角边为x,则x==,综上所述,第三边的长为4或,故答案为4或.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.注意分类讨论思想的运用.15、(0,﹣2)或(2,﹣2)或(2,2)【分析】根据题意画出符合条件的图形,根据图形结合A、B、C的坐标即可得出答案.【详解】解:∵△ABC与△ABD全等,如图所示:点D坐标分别为:(0,﹣2)或(2,﹣2)或(2,2).故答案为:(0,﹣2)或(2,﹣2)或(2,2).【点睛】本题考查三角形全等的判定和坐标与图形性质,注意要进行分类讨论,能求出符合条件的所有情况是解题的关键.16、.【分析】方程两边同乘以(x-3)变为整式方程,解答整式方程,最后进行检验即可.【详解】,方程两边同乘以(x-3),得,x-2=4(x-3)解得,.检验:当时,x-3≠1.故原分式方程的解为:.【点睛】本题主要考查了解分式方程,解题的关键是将分式方程转化为整式方程再求解,注意最后要检验.17、【分析】过点E作EG⊥AB交射线AB于G,作EH⊥AC于H,根据矩形的定义可得四边形AGEH为矩形,然后根据角平分线的性质可得EG=EH,从而证出四边形AGEH为正方形,可得AG=AH,然后利用HL证出Rt△EGB≌Rt△EHC,从而得出BG=HC,列出方程即可求出AG,然后根据S四边形ABEC=S四边形ABEH+S△EHC即可证出S四边形ABEC=S正方形AGEH,最后根据正方形的面积公式求面积即可.【详解】解:过点E作EG⊥AB交射线AB于G,作EH⊥AC于H∴∠AGE=∠GAH=∠AHE=90°∴四边形AGEH为矩形∵AF平分∠BAC∴EG=EH∴四边形AGEH为正方形∴AG=AH∵DE垂直平分BC∴EB=EC在Rt△EGB和Rt△EHC中∴Rt△EGB≌Rt△EHC∴BG=HC∴AG-AB=AC-AH∴AG-3=4-AG解得AG=∴S四边形ABEC=S四边形ABEH+S△EHC=S四边形ABEH+S△EGB=S正方形AGEH=AG2=故答案为:.【点睛】此题考查的是正方形的判定及性质、角平分线的性质、垂直平分线的性质、全等三角形的判定及性质和正方形的面积公式,掌握正方形的判定及性质、角平分线的性质、垂直平分线的性质、全等三角形的判定及性质和正方形的面积公式是解决此题的关键.18、(1,0)【分析】作P点关于x轴对称点P₁,根据轴对称的性质PM=P₁M,MP+MQ的最小值可以转化为QP₁的最小值,再求出QP₁所在的直线的解析式,即可求出直线与x轴的交点,即为M点.【详解】如图所示,作P点关于x轴对称点P₁,∵P点坐标为(0,1)∴P₁点坐标(0,﹣1),PM=P₁M连接P₁Q,则P₁Q与x轴的交点应满足QM+PM的最小值,即为点M设P₁Q所在的直线的解析式为y=kx+b把P₁(0,﹣1),Q(5,4)代入解析式得:解得:∴y=x-1当y=0时,x=1∴点M坐标是(1,0)故答案为(1,0)【点睛】本题主要考查轴对称-最短路线问题,关键是运用轴对称变换将处于同侧的点转换为直线异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短或垂线段最短来确定方案,使两条线段之和转化为一条线段.三、解答题(共66分)19、(1)(﹣3,1)(1)见解析(3)(a﹣3,b+1)【解析】试题分析:(1)根据坐标系可得B点坐标,再根据关于y轴对称的对称点的坐标特点:横坐标相反,纵坐标不变可得答案;(1)首先确定A、B、C三点平移后的对应点位置,然后再连接即可;(3)根据△AOB的平移可得P的坐标为(a,b),平移后横坐标﹣3,纵坐标+1.解:(1)B点关于y轴的对称点坐标为(﹣3,1),故答案为(﹣3,1);(1)如图所示:(3)P的坐标为(a,b)平移后对应点P1的坐标为(a﹣3,b+1).故答案为(a﹣3,b+1).点评:此题主要考查了作图﹣﹣平移变换,关键是几何图形都可看做是由点组成,我们在画一个图形的平移图形时,也就是确定一些特殊点的对应点.20、(1)详见解析;(2)【分析】(1)连接AE,CE,由题意得AE=CE,根据等腰三角形中线的性质得证AE=CE.(2)连接CF,通过证明△AOF≌△COB(ASA),求得CF、DF的长,利用勾股定理求得CD的长.【详解】(1)连接AE,CE,由题意可知,AE=CE又∵O是AC的中点,∴EO⊥AC即BE⊥AC(2)连接CF,由(1)知,BE垂直平分AC,∴AF=CF∵AD∥BC,∴∠DAC=∠BCA在△AOF和△COB中∴△AOF≌△COB(ASA)∴AF=BC=2,∴CF=AF=2,∵AD=3,∴DF=3-2=1∵∠D=90°,∴在Rt△CFD中,答:CD的长为【点睛】本题考查了三角形的综合问题,掌握等腰三角形中线的性质、全等三角形的判定定理以及勾股定理是解题的关键.21、(1)y=2x+5;(2)y=2x+1.【分析】(1)利用平行线性质可知k值相等,进而将P点坐标代入即可求出直线的表达式;(2)由题意设直线AB的表达式为:y=kx+b,求出直线AB的表达式,再根据题意设AB边上的高CD所在直线的直线表达式为y=mx+n,进行分析求出CD所在直线的表达式.【详解】(1)∵∥∴,∵直线经过点P(-2,1)∴=2×(-2)+,=5,∴直线的表达式为:y=2x+5.(2)设直线AB的表达式为:y=kx+b∵直线经过∴,解得,∴直线AB的表达式为:;设AB边上的高所在直线的表达式为:y=mx+n,∵CD⊥AB,∴,∵直线CD经过点C(-1,-1),∴∴边上的高所在直线的表达式为:y=2x+1.【点睛】此题考查一次函数的性质,理解题意并利用待定系数法求一次函数解析式的解题关键.22、证明见解析.【分析】先由两线段平行推出同位角相等,再由全等三角形推出对应角相等,接着由同位角相等反推出两线段平行.【详解】证明:∵∥,∴,∵,∴即,在△ABC和△DEF中,,∴△ABC≌△DEF,∴,∴∥.【点睛】本题考查全等三角形的性质和判定.本题较为简单,难度不大,只需证明出两个三角形全等,即可证明出其对应的角相等.23、(1)120千米时;(2)对应的函数解析式为,对应的函数解析式为;(3)分钟;(4)当行驶小时或小时后,,两车相距120千米.【分析】(1)根据函数图象可以得到汽车的速度;(2)根据图象可以设出、的解析式,由函数图象上的点可以求得它们的解析式;(3)根据函数关系式列方程解答即可;(4)分两种情况讨论,相遇前和相遇后,然后列方程解答即可.【详解】解:(1)由图象可得,(千米时);答:汽车的速度为120千米时;(2)设对应的函数解析式为,,解得,即对应的函数解析式为,∵经过原点,则设对应的函数解析式为,,得,即对应的函数解析式为;(3)当两车相遇时,可得方程,解之得:;(4)由图象可得,汽车的速度为:千米时;设两车相距120千米时的时间是,则当两车没有相遇前,相距120千米时解之得:;当两车相遇后,再相距120千米时,解得,当时,汽车行驶的距离是,即汽车还没有达到终点,符合题意,答:当行驶小时或小时后,,两车相距120千米.【点睛】本题考查一次函数的应用和余元一次方程的应用,解题的关键是明确题意,找出所求问题需要的条件是解题的关键.24、(1)答案见解析;(2)众数是1.5小时,中位数是1.5小时;(3)1.32小时.【分析】(1)根据观赛时间为1小时的人数和所占的百分比可以求得本次调查的人数,从而可以得到观赛时间为1.5小时的人数,进而可以将条形统计图补充完整;
(2)根据(1)中条形统计图中的数据可以得到抽查的市民观赛时间的众数、中位数;
(3)根据条形统计图中的数据可以计算出所有被调查市民的平均观赛时间.【详解】(1)本次调查的人数为:30÷30%=100,观赛时间为1.5小时的有:100﹣12﹣30﹣18=40(人),补全的条形统计图如右图所示;(2)由(1)中的条形统计图可知,抽查的市民观赛时间的众数、中位数分别是1.5小时、1.5小时;(3)1.32(小时),答:所有被调查市民的平均观赛时间是1.32小时.【点睛】本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 招标投标流程培训
- 2024年饲料及宠物食品项目资金需求报告代可行性研究报告
- 矿棉项目可行性研究报告
- 隔热垫项目可行性研究报告
- 新建雷贝拉唑钠肠溶片项目立项申请报告
- 年产xxx尖尾棘轮扳手项目可行性研究报告(可行性分析)
- 年产xx橡胶木饰面项目可行性研究报告(投资方案)
- 慕课职业生涯规划
- 2023-2024学年广东省深圳市龙岗区三年级(上)期末英语试卷
- 4.3海-气相互作用课件高中地理人教版(2019)选择性必修一
- 银行信贷业务中的法律风险防范与控制
- 高中化学-探究亚铁盐和铁盐的性质及转化教学设计学情分析教材分析课后反思
- 空气压缩机技术规范标准
- 铜及铜合金物理冶金基础-相图、紫铜
- 国家有关安全生产的方针政策法律法规
- 《临床输血技术规范》之输血指南
- 色彩的三属性与色立体
- 大国工匠彭祥华PPT
- 怒江水电开发的工程伦理案例分析
- 海南省文昌市龙楼镇赤筠村矿区石英采矿权出让收益评估报告
- SMM英国建筑工程标准计量规则中文 全套
评论
0/150
提交评论