版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届黑龙江省哈尔滨市五常市八年级数学第一学期期末考试试题试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在Rt△ABC中,∠B=90°,D是BC延长线上一点,∠ACD=130°,则∠A等于()A.40° B.50° C.65° D.90°2.下列因式分解结果正确的是()A.2a2﹣4a=a(2a﹣4) B.C.2x3y﹣3x2y2+x2y=x2y(2x﹣3y) D.x2+y2=(x+y)23.在△ABC中,AB=AC,∠A=80°,进行如下操作:①以点B为圆心,以小于AB长为半径作弧,分别交BA、BC于点E、F;②分别以E、F为圆心,以大于12③作射线BM交AC于点D,则∠BDC的度数为().A.100° B.65° C.75° D.105°4.下列关于幂的运算正确的是()A. B. C. D.5.下列各式中,正确的是()A.=±4 B.±=4 C. D.6.下列二次根式是最简二次根式的是()A. B. C. D.以上都不是7.如图所示,在△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至点G,取NG=NQ,若△MNP的周长为12,MQ=a,则△MGQ周长是()A.8+2a B.8a C.6+a D.6+2a8.如图,在中,,,,边的垂直平分线交于点,交于点,那么的为()A.6 B.4 C.3 D.29.等腰三角形一腰上的高与另一腰的夹角为,则这个等腰三角形的顶角度数为()A. B. C. D.或10.如图,BP平分∠ABC,D为BP上一点,E,F分别在BA,BC上,且满足DE=DF,若∠BED=140°,则∠BFD的度数是()A.40° B.50° C.60° D.70°11.如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°12.校乒乓球队员的年龄分布如下表所示:年龄(岁)人数对于不同的,下列关于年龄的统计量不会发生改变的是()A.众数,中位数 B.众数,方差 C.平均数,中位数 D.平均数,方差二、填空题(每题4分,共24分)13.如图,是的角平分线,点在边的垂直平分线上,,则__________度.14.如图,中,平分,,,,,则__________.15.把命题“三角形内角和等于180°”改写成如果,那么.16.甲、乙二人同时从A地出发,骑车20千米到B地,已知甲比乙每小时多行3千米,结果甲比乙提前20分钟到达B地,求甲、乙二人的速度。若设甲用了x小时到达B地,则可列方程为_____________________17.如图,已知直线l1:y=kx+4交x轴、y轴分别于点A(4,0)、点B(0,4),点C为x轴负半轴上一点,过点C的直线l2:经过AB的中点P,点Q(t,0)是x轴上一动点,过点Q作QM⊥x轴,分别交l1、l2于点M、N,当MN=2MQ时,t的值为_____.18.根据…的规律,可以得出的末位数字是___________.三、解答题(共78分)19.(8分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a771.2乙7b8c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员.20.(8分)(1)分解因式:.(2)分解因式:;(3)解方程:.21.(8分)已知等边和等腰,,.(1)如图1,点在上,点在上,是的中点,连接,,则线段与之间的数量关系为;(2)如图2,点在内部,点在外部,是的中点,连接,,则(1)中的结论是否仍然成立?若成立,请给出证明,若不成立,请说明理由.(3)如图3,若点在内部,点和点重合,点在下方,且为定值,当最大时,的度数为.22.(10分)如图①,已知是等腰三角形,是边上的高,垂足为,是底边上的高,交于点.(1)若.求证:≌;(2)在图②,图③中,是等腰直角三角形,点在线段上(不含点),,且交于点,,垂足为.ⅰ)如图②,当点与点重合,试写出与的数量关系;ⅱ)如图③,当点在线段上(不含点,)时,ⅰ)中的结论成立吗?如果成立,请证明;如果不成立,请说明理由.23.(10分)某公司决定从厂家购进甲、乙两种不同型号的显示器共50台,购进显示器的总金额不超过77000元,已知甲、乙型号的显示器价格分别为1000元/台、2000元/台.(1)求该公司至少购买甲型显示器多少台?(2)若要求甲型显示器的台数不超过乙型显示器的台数,问有哪些购买方案?24.(10分)如图,已知,直线l垂直平分线段AB尺规作图:作射线CM平分,与直线l交于点D,连接AD,不写作法,保留作图痕迹在的条件下,和的数量关系为______.证明你所发现的中的结论.25.(12分)(1)运用乘法公式计算:.(2)解分式方程:.26.求出下列x的值:(1)4x2﹣81=0;(2)8(x+1)3=1.
参考答案一、选择题(每题4分,共48分)1、A【详解】∠ACD=∠A+∠B,即130°=∠A+90°,解得∠A=40°.故选A.【点睛】本题考查三角形的一个外角等于与之不相邻的两个内角之和.2、B【分析】根据因式分解的方法对各式进行判断即可得出答案.【详解】A、2a2-4a=2a(a-2),故此选项错误;B、-a2+2ab-b2=-(a-b)2,此选项正确;C、2x3y-3x2y2+x2y=x2y(2x-3y+1),故此选项错误;D、x2+y2无法分解因式,故此选项错误;故选B.【点睛】此题主要考查了提取公因式法以及公式法分解因式,熟练掌握乘法公式是解题关键.3、D【解析】利用等腰三角形的性质结合三角形内角和定理得出∠ABC=∠C=50°,再利用角平分线的性质与作法得出即可.【详解】∵AB=AC,∠A=80°,∴∠ABC=∠C=50°,由题意可得:BD平分∠ABC,则∠ABD=∠CBD=25°,∴∠BDC的度数为:∠A+∠ABD=105°.故选D.【点睛】此题主要考查了基本作图以及等腰三角形的性质,得出BD平分∠ABC是解题关键.4、C【分析】根据积的乘方等于乘方的积,非零的零次幂等于1,负整数指数幂与正整数指数幂互为倒数,幂的乘方底数不变指数相乘,可得答案.【详解】解:A、(-a)2=a2,故A错误;B、非零的零次幂等于1,故B错误;C、负整数指数幂与正整数指数幂互为倒数,故C正确;D、幂的乘方底数不变指数相乘,故D错误;故选:C.【点睛】本题考查了负整数指数幂,熟记法则并根据法则计算是解题关键,注意负整数指数幂的底数不能为零.5、C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得.【详解】A、,此项错误;B、,此项错误;C、,此项正确;D、,此项错误;故选:C.【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键.6、C【分析】根据最简二次根式的定义分别进行判断,即可得出结论.【详解】解:A.,故此选项错误;B.,故此选项错误;C.是最简二次根式,故此选项正确.故选:C.【点睛】本题主要考查最简二次根式,掌握最简二次根式的定义是解答此题的关键.7、D【分析】在△MNP中,∠P=60°,MN=NP,证明△MNP是等边三角形,再利用MQ⊥PN,求得PM、NQ长,再根据等腰三角形的性质求解即可.【详解】解:∵△MNP中,∠P=60°,MN=NP
∴△MNP是等边三角形.
又∵MQ⊥PN,垂足为Q,
∴PM=PN=MN=4,NQ=NG=2,MQ=a,∠QMN=30°,∠PNM=60°,
∵NG=NQ,
∴∠G=∠QMN,
∴QG=MQ=a,
∵△MNP的周长为12,
∴MN=4,NG=2,
∴△MGQ周长是6+2a.
故选:D.【点睛】本题考查了等边三角形的判定与性质,难度一般,认识到△MNP是等边三角形是解决本题的关键.8、B【解析】连接BE,利用垂直平分线的性质可得AE=BE,从而∠EBA=∠A=30°,然后用含30°角的直角三角形的性质求解.【详解】解:连接BE.∵边的垂直平分线交于点,交于点∴AE=BE∴∠EBA=∠A=30°又∵在中,,∴∠CBA=60°,∴∠CBE=30°∴在中,∠CBE=30°BE=2CE=4即AE=4故选:B.【点睛】本题考查垂直平分线的性质及含30°直角三角形的性质,题目比较简单,正确添加辅助线是解题关键.9、D【分析】首先想到等腰三角形分为锐角、直角、钝角等腰三角形,当为等腰直角三角形时不可能出现题中所说情况所以舍去不计,我们可以通过画图来讨论剩余两种情况.【详解】解:①当为锐角三角形时可以画图,高与另一边腰成40°夹角,由三角形内角和为180°可得,三角形顶角为50°②当为钝角三角形时可以画图,此时垂足落到三角形外面,因为三角形内角和为180°,由图可以看出等腰三角形的顶角的补角为50°,则三角形的顶角为130°.综上,等腰三角形顶角度数为或故选:D.【点睛】本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键,难度适中.10、A【分析】作DG⊥AB于G,DH⊥BC于H,根据角平分线的性质得到DH=DG,证明Rt△DEG≌Rt△DFH,得到∠DEG=∠DFH,根据互为邻补角的性质得到答案.【详解】作DG⊥AB于G,DH⊥BC于H,∵D是∠ABC平分线上一点,DG⊥AB,DH⊥BC,∴DH=DG,在Rt△DEG和Rt△DFH中,∴Rt△DEG≌Rt△DFH(HL),∴∠DEG=∠DFH,又∠DEG+∠BED=180°,∴∠BFD+∠BED=180°,∴∠BFD的度数=180°-140°=40°,故选A.【点睛】此题考查角平分线的性质,全等三角形的判定与性质,邻补角的性质,解题关键在于作辅助线11、B【分析】根据平行线的判定定理逐项判断即可.【详解】A、当∠1=∠3时,a∥b,内错角相等,两直线平行,故正确;B、∠2与∠3不是同位角,也不是内错角,无法判断,故错误;C、当∠4=∠5时,a∥b,同位角相等,两直线平行,故正确;D、当∠2+∠4=180°时,a∥b,同旁内角互补,两直线平行,故正确.故选:B.【点睛】本题考查了平行线的判定,熟记判定定理是解题的关键.12、A【分析】先求出总人数,再确定不变的量即可.【详解】人,一共有个人,关于年龄的统计量中,有个人岁,∴众数是15,中位数是15,对于不同的,统计量不会发生改变的是众数和中位数,故选A.【点睛】本题主要考查的是学生对中位数和众数的定义等知识的掌握情况及灵活运用能力,解题的关键在于能够熟知中位数和众数的定义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.二、填空题(每题4分,共24分)13、1【分析】由线段垂直平分线的性质可得DB=DC,根据等腰三角形的性质可得∠DBC的度数,根据角平分线的性质可得∠ABD的度数,再根据三角形的内角和即得答案.【详解】解:∵点在边的垂直平分线上,∴DB=DC,∴∠DBC=,∵是的角平分线,∴∠ABD=,∴.故答案为:1.【点睛】本题考查了线段垂直平分线的性质、等腰三角形的性质、角平分线的定义和三角形的内角和定理等知识,属于基础题型,熟练掌握上述基本知识是解题关键.14、【分析】根据题意延长CE交AB于K,由,平分,由等腰三角形的性质,三线合一得,利用角平分线性质定理,分对边的比等于邻边的比,结合外角平分性质和二倍角关系可得.【详解】如图,延长CE交AB于K,,平分,等腰三角形三线合一的判定得,,,,,,,,,,,故答案为:.【点睛】考查了三线合一判定等腰三角形,等腰三角形的性质,角平分线定理,外角的性质,以及二倍角的角度关系代换,熟记几何图形的性质,定理,判定是解题的关键.15、有一个三角形的三个内角;它们和等于180°【解析】试题分析:这个题是考察命题的定义的理解,所以知道题设和结论就可以写出.考点:命题的定义,定理16、【分析】设甲用了x小时到达B地,则乙用了小时到达B地,然后根据甲比乙每小时多行3千米即可列出方程.【详解】解:设甲用了x小时到达B地,则乙用了小时到达B地由题意得:.故答案为.【点睛】本题考查了分式方程的应用,弄清题意、明确等量关系成为解答本题的关键.17、10或【分析】先求出的值,确定的关系式,然后根据一次函数图象上点的坐标特征求得点M、N的坐标,由两点间的距离公式求得MN,MQ的代数式,由已知条件,列出方程,借助于方程求得t的值即可;【详解】解:把代入到中得:,解得:,∴的关系式为:,∵为的中点,,∴由中点坐标公式得:,把代入到中得:,解得:,∴的关系式为:,∵轴,分别交直线,于点,,∴,,∴,,∵,∴,分情况讨论得:①当时,去绝对值得:,解得:;②当时,去绝对值得:,解得:;③当时,去绝对值得:,解得:,故舍去;综上所述:或;故答案为:或.【点睛】本题属于一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,两点间的距离公式等知识点,能够表示出线段的长度表达式,合理的使用分类讨论思想是解决本题的关键,有一定的难度.18、【分析】由多项式的乘法概括出运算规律,根据规律得到的结果,再根据可得答案.【详解】解:根据规律得:()个位数每4个循环,的尾数为8,的末位数字是故答案为:【点睛】本题考查的与多项式乘法相关的规律,掌握归纳出运算规律是解题的关键.三、解答题(共78分)19、(1)a=7,b=7.5,c=4.2;(2)派乙队员参赛,理由见解析【分析】(1)根据加权平均数的计算公式,中位数的确定方法及方差的计算公式即可得到a、b、c的值;(2)根据平均数、中位数、众数、方差依次进行分析即可得到答案.【详解】(1),将乙射击的环数重新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击的中位数,∵乙射击的次数是10次,∴=4.2;(2)从平均成绩看,甲、乙的成绩相等,都是7环;从中位数看,甲射中7环以上的次数小于乙;从众数看,甲射中7环的次数最多,而乙射中8环的次数最多;从方差看,甲的成绩比乙稳定,综合以上各因素,若派一名同学参加比赛的话,可选择乙参赛,因为乙获得高分的可能性更大.【点睛】此题考查数据的统计计算,根据方程作出决策,掌握加权平均数的计算公式,中位数的计算公式,方差的计算公式是解题的关键.20、(1);(2);(3)无解【分析】(1)利用提公因式法因式分解即可;(2)先提取公因式,然后利用平方差公式因式分解即可;(3)根据解分式方程的一般步骤解分式方程即可.【详解】解:(1)====(2)==(3)化为整式方程,得去括号,得移项、合并同类项,得解得:经检验:是原方程的增根,原方程无解.【点睛】此题考查的是因式分解和解分式方程,掌握用提公因式法和平方差公式因式分解和解分式方程的一般步骤是解决此题的关键,需要注意的是,分式方程要验根.21、(1);(2)成立,理由见解析;(3)【分析】(1)根据等边三角形的性质,,,可得是等边三角形,是的中点,利用等边三角形三线合一性质,以及得出,所以PD是中位线,得出点D是BC的中点,AD=CE,可得出结论.(2)作辅助线,延长ED到F,使得,使得是等边三角形,PD是的中位线,通过证明三角形全等得出可证明结论.(3)作出等腰,由旋转模型证明三角形,利用P、C、K三点共线时,PK最大,即PD最大可求解得.【详解】(1)根据图1,在等边和等腰中,,,,,是等边三角形,是的中点,,,,PD是中位线分别是的中点,,故答案为:.(2)结论成立.理由:如下图中,延长ED到F,使得,连接FC,BF,,是等边三角形,,在和中,,,故答案为:结论成立;(3)作,且,连接PK,DK,则为等腰三角形,在和中,,即为定值.P、C、K三点共线时,PK最大,即PD最大,此时,,故答案为:.【点睛】考查了全等三角形的判定和性质应用,等腰三角形三线合一的性质应用,等边三角形的判定和性质,中点和中位线的性质,利用了三线共点判定线段最大,熟记性质和判定定理是解决问题的关键.22、(1)见解析;(2)ⅰ);ⅱ)成立,证明见解析【分析】(1)如图1,根据同角的余角相等证明,利用ASA证明≌;(2)①如图2,作辅助线,构建全等三角形,证明≌,则CP=AF,再证明≌,可得结论;②结论仍然成立,过点作的平行线交于,且于的延长线相交于点,证明≌,得,再证明≌即可求解.【详解】证明:(1)∵∴∵∴在和中∴≌;(2)ⅰ):证明过程如下:延长、交于点∵∴∵∴∵是等腰直角三角形,∴AE=CE,又∴≌∴∵∴平分则∵∴又AD=AD∴≌(ASA)∴∴∴;ⅱ)成立,即证明如下:过点作的平行线交于,且于的延长线相交于点∴,∴=∴是等腰直角三角形,∴CQ=QB同理可得≌∴∵=∴BD平分则∵∴=90又BD=BD∴≌(ASA)∴∴∴.【点睛】本题是三角形的综合题,考查了全等三角形的性质和判定、等腰三角形的性质、等腰直角三角形的性质和判定,运用了类比的思想,作辅助线构建全等三角形是本题的关键,难度适中.23、(1)该公司至少购进甲型显示器1台;(2)购买方案有:①甲型显示器1台,乙型显示器27台;②甲型显示器24台,乙型显示器26台;③甲型显示器2台,乙型显示器2台.【分析】(1)设该公司购进甲型显示器x台,则购进乙型显示器(50-x)台,根据两种显示器的总价不超过77000元建立不等式,求出其解即可;(2)由甲型显示器的台数不超过乙型显示器的台数可以建立不等式x≤50-x与(1)的结论构成不等式组,求出其解即可.【详解】解:(1)设该公司购进甲型显示器x台,则购进乙型显示器(50-x)台,由题意,得:1000x+2000(50-x)≤77
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 化工产品检测代理合同模板
- 企业专用劳动合同聘用合同书
- 科技园区企业租赁合同模板
- 养老院建设项目招投标文件
- 林业开发铣刨机租赁合同
- 国有企业知识管理策略
- 环保项目内部招投标管理规定
- 木结构工程混凝土施工承包合同
- 水果公司宿舍电费管理准则
- 商业大厦铁艺施工合同
- 新版UCP600的中英文版下载
- pet考试历届真题和答案
- 《企业员工薪酬激励问题研究10000字(论文)》
- 大学英语三级B真题2023年06月
- 2023年地理知识竞赛试题及答案
- GB 1903.33-2022食品安全国家标准食品营养强化剂5′-单磷酸胞苷(5′-CMP)
- YC/T 207-2014烟用纸张中溶剂残留的测定顶空-气相色谱/质谱联用法
- GB/T 7909-2017造纸木片
- GB/T 25217.6-2019冲击地压测定、监测与防治方法第6部分:钻屑监测方法
- 中医学课件 治则与治法
- 我最喜欢的建筑
评论
0/150
提交评论