版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福建省南平市光泽县八年级数学第一学期期末质量检测模拟试题模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.在,,,,,中,分式有()A.2个; B.3个; C.4个; D.5个;2.一个三角形的三边长分别为,则这个三角形的形状为()A.钝角三角形 B.直角三角形 C.锐角三角形 D.形状不能确定3.下列各组数为勾股数的是()A.6,12,13B.3,4,7C.8,15,16D.5,12,134.如图,AB=AC,AE=AD,要使△ACD≌△ABE,需要补充的一个条件是()A.∠B=∠C B.∠D=∠E C.∠BAC=∠EAD D.∠B=∠E5.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A. B. C. D.6.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形7.代数之父——丢番图(Diophantus)是古希腊的大数学家,是第一位懂得使用符号代表数来研究问题的人.丢番图的墓志铭与众不同,不是记叙文,而是一道数学题.对其墓志铭的解答激发了许多人学习数学的兴趣,其中一段大意为:他的一生幼年占,青少年占,又过了才结婚,5年后生子,子先父4年而卒,寿为其父之半.下面是其墓志铭解答的一种方法:解:设丢番图的寿命为x岁,根据题意得:,解得.∴丢番图的寿命为84岁.这种解答“墓志铭”体现的思想方法是()A.数形结合思想 B.方程思想 C.转化思想 D.类比思想8.到三角形的三个顶点距离相等的点是()A.三条角平分线的交点 B.三条边的垂直平分线的交点C.三条高的交点 D.三条中线的交点9.若分式的值为正数,则的取值范围是()A. B. C. D.且10.如图,是的角平分线,是边上的一点,连接,使,且,则的度数是()A. B. C. D.11.如图,已知△ABC≌△DAE,BC=2,DE=5,则CE的长为().A.2 B.2.5 C.3 D.3.512.如图,在中,,将绕点逆时针旋转,使点落在点处,点落在点处,则两点间的距离为()A. B. C. D.二、填空题(每题4分,共24分)13.点P(3,2)关于y轴的对称点的坐标是_________.14.若实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是______.15.如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为______.16.如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交,边于,点.若点为边的中点,点为线段上以动点,则周长的最小值为_____________17.如图,正方形ABCD,以CD为边向正方形内作等边△DEC,则∠EAB=______________º.18.因式分解:____.三、解答题(共78分)19.(8分)如图,有三个论断:①∠1=∠2;②∠B=∠C;③∠A=∠D,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.20.(8分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.21.(8分)如图①是一个长为,宽为的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图②形状拼成一个正方形.(1)若,.求图②中阴影部分面积;(2)观察图②,写出,,三个代数式之间的等量关系.(简要写出推理过程)(3)根据(2)题的等量关系,完成下列问题:若,,求的值.22.(10分)计算或因式分解:(1)计算:(a2-4)÷;(2)因式分解:a(n-1)2-2a(n-1)+a.23.(10分)一个有进水管与出水管的容器,从某时刻开始分钟内只进水不出水.在随后的分钟内既进水又出水,直到容器内的水量达到.如图,坐标系中的折线段表示这一过程中容器内的水量(单位:)与时间(单位:分)之间的关系.(1)单独开进水管,每分钟可进水________;(2)求进水管与出水管同时打开时容器内的水量与时间的函数关系式;(3)当容器内的水量达到时,立刻关闭进水管,直至容器内的水全部放完.请在同一坐标系中画出表示放水过程中容器内的水量与时间关系的线段,并直接写出点的坐标.24.(10分)如图,ABC中,AB=AC,AD⊥BC于点D,延长AB至点E,使∠AEC=∠DAB.判断CE与AD的数量关系,并证明你的结论.25.(12分)如图,四边形中,,,,是四边形内一点,是四边形外一点,且,,(1)求证:;(2)求证:.26.父亲两次将100斤粮食分给兄弟俩,第一次分给哥哥的粮食等于第二次分给弟弟的2倍,第二次分给哥哥的粮食是第一次分给弟弟的3倍,求两次分粮食中,哥哥、弟弟各分到多少粮食?
参考答案一、选择题(每题4分,共48分)1、B【解析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】在,,,,,中,分式有,,,一共3个.故选B.【点睛】本题主要考查分式的定义,分母中含有字母则是分式,如果不含有字母则不是分式.2、B【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【详解】解:∵,,∴∴∴这个三角形一定是直角三角形,
故选:B.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3、D【解析】A选项:62+122≠132,故此选项错误;
B选项:32+42≠72,故此选项错误;
C选项:因为82+152≠162,故此选项错误;
D选项:52+122=132,故此选项正确.
故选D.【点睛】一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.4、C【解析】解:∠BAC=∠EAD,理由是:∵∠BAC=∠EAD,∴∠BAC+∠CAE=∠EAD+∠CAE,∴∠BAE=∠CAD,在△ACD和△ABE中,∵AC=AB,∠CAD=∠BAE,AD=AE,∴△ACD≌△ABE(SAS),选项A,选项B,选项D的条件都不能推出△ACD≌△ABE,只有选项C的条件能推出△ACD≌△ABE.故选C.【点睛】本题考查了全等三角形的判定定理的应用,能正确运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.5、D【分析】根据轴对称图形的概念判断即可求解.【详解】解:A、不是轴对称图形.故选项错误,不合题意;B、不是轴对称图形.故选项错误,不合题意;C、不是轴对称图形.故选项错误,不合题意;D、是轴对称图形.故选项正确,符合题意.故选:D.【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,折叠后两边可重合.6、B【解析】根据菱形的性质逐项进行判断即可得答案.【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B.【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.7、B【分析】根据解题方法进行分析即可.【详解】根据题意,可知这种解答“墓志铭”的方法是利用设未知数,根据已经条件列方程求解,体现的思想方法是方程思想,故选:B.【点睛】本题考查了解题思想中的方程思想,掌握知识点是解题关键.8、B【分析】根据到线段两端点的距离相等的点在这条线段的垂直平分线上得出即可.【详解】解:∵OA=OB,∴O在线段AB的垂直平分线上,∵OC=OA,∴O在线段AC的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,即O是△ABC的三边垂直平分线的交点,故选:B.【点睛】本题考查了对线段垂直平分线性质的理解和运用,注意:线段两端点的距离相等的点在这条线段的垂直平分线上.9、D【分析】若的值是正数,只有在分子分母同号下才能成立,即x+4>1,且x≠1,因而能求出x的取值范围.【详解】∵x≠1,∴.∵1,∴x+4>1,x≠1,∴x>﹣4且x≠1.故选:D.【点睛】本题考查了分式值的正负性问题,若对于分式(b≠1)>1时,说明分子分母同号;分式(b≠1)<1时,分子分母异号,注意此题中的x≠1.10、C【分析】根据∠AMB=∠MBC+∠C,想办法求出∠MBC+∠C即可.【详解】解:∵DA=DC,
∴∠DAC=∠C,
∵∠ADB=∠C+∠DAC,
∴∠ADB=2∠C,
∵MB平分∠ABC,
∴∠ABM=∠DBM,
∵∠BAD=130°,
∴∠ABD+∠ADB=50°,
∴2∠DBM+2∠C=50°,
∴∠MBC+∠C=25°,
∴∠AMB=∠MBC+∠C=25°,
故选:C.【点睛】本题考查三角形内角和定理、三角形的外角的性质、等腰三角形的性质,角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题.11、C【分析】依据全等三角形的性质及等量代换即可求出.【详解】解:∵△ABC≌△DAE,∴AE=BC=2,AC=DE=5,∴CE=AC−AE=3.故选:C.【点睛】找到全等三角形的对应边是关键.12、B【分析】延长BE和CA交于点F,根据旋转的性质可知∠CAE=,证明∠BAE=∠ABC,即可证得AE∥BC,得出,即可求出BE.【详解】延长BE和CA交于点F∵绕点逆时针旋转得到△AED∴∠CAE=∴∠CAB+∠BAE=又∵∠CAB+∠ABC=∴∠BAE=∠ABC∴AE∥BC∴∴AF=AC=2,FC=4∴BF=∴BE=EF=BF=故选:B【点睛】本题考查了旋转的性质,平行线的判定和性质.二、填空题(每题4分,共24分)13、(﹣3,2).【详解】解:点P(m,n)关于y轴对称点的坐标P′(﹣m,n),所以点P(3,2)关于y轴对称的点的坐标为(﹣3,2).故答案为(﹣3,2).14、15【详解】因为实数x,y满足,所以,解得:,,因为x,y的值是等腰三角形的两边长,所以等腰三角形的三边可能是:3,3,6或3,6,6,又因为3+3=6,所以等腰三角形三边是:3,6,6,所以等腰三角形的周长是15,故答案为:15.点睛:本题主要考查非负数的非负性和三角形三边关系,等腰三角形的性质.15、125°【详解】解:Rt△ABE中,∠ABE=20°,∴∠AEB=70°,由折叠的性质知:∠BEF=∠DEF,而∠BED=180°﹣∠AEB=110°,∴∠BEF=55°,易知∠EBC=∠D=∠BC′F=∠C=90°,∴BE∥C′F,∴∠EFC′=180°﹣∠BEF=125°.故答案为125°.【点睛】本题考查翻折变换(折叠问题).16、10【分析】根据线段的垂直平分线定理,可知C点与A点关于点E对称,此时MC=AM,,由于CD为定值,当MA+MD最小时,的周长才有最小值,而当A、M、D三点处于同一直线时,的周长取得最小值.【详解】如图,连接AM,可得:∵腰的垂直平分线分别交,边于,点∴根据两点之间线段最短,可得在等腰三角形ABC中,底边长为,面积是,∴,解得AD=8,【点睛】本题考查等腰三角形的面积计算以及线段的垂直平分线性质,熟练运用线段的垂直平分线性质是解题的关键.17、15.【解析】根据正方形ABCD,得到AD=CD,∠ADC=90°,根据等边△CDE,得到CD=DE,∠CDE=60°,推出AD=DE,得出∠DAE=∠AED,根据三角形的内角和定理求出∠DAE,从而可得∠EAB的度数.【详解】∵正方形ABCD,∴AD=CD,∠ADC=∠DAB=90°,∵等边△CDE,∴CD=DE,∠CDE=60°,∴∠ADE=90°-60°=30°,∴AD=DE,∴∠DAE=∠AED=(180°-∠ADE)=75°;∴∠EAB=90°-75°=15°.故答案为:15°【点睛】本题主要考查对正方形的性质,等边三角形的性质,等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.18、x(x-1)【分析】提取公因式x进行因式分解.【详解】x(x-1).故答案是:x(x-1).【点睛】考查了提公因式法分解因式,熟练掌握因式分解的方法是解本题的关键.三、解答题(共78分)19、答案见解析.【解析】试题分析:根据题意,从中任选两个作为条件,另一个作为结论构成一个命题,根据平行线的判定和性质及对顶角相等进行证明.试题解析:解:已知:∠1=∠2,∠B=∠C.求证:∠A=∠D.证明:∵∠1=∠3,∠1=∠2,∴∠3=∠2,∴EC∥BF,∴∠AEC=∠B.又∵∠B=∠C,∴∠AEC=∠C,∴AB∥CD,∴∠A=∠D.20、(1)证明见解析;(2)1.【解析】试题分析:(1)根据△AEO和△CFO全等来进行说明;(2)连接OB,得出△BOF和△BOE全等,然后求出∠BAC的度数,根据∠BAC的正切值求出AB的长度.试题解析:(1)∵四边形ABCD是矩形,∴AB∥CD∴∠OAE=∠OCF∠OEA=∠OFC∵AE=CF∴△AEO≌△CFO∴OE=OF(2)连接BO∵OE=OFBE=BF∴BO⊥EF且∠EBO=∠FBO∴∠BOF=90°∵四边形ABCD是矩形∴∠BCF=90°∵∠BEF=2∠BAC∠BEF=∠BAC+∠EOA∴∠BAC=∠EOAAE=OE∵AE=CFOE=OF∴OF=CF又∵BF=BF∴Rt△BOF≌Rt△BCF∴∠OBF=∠CBF∴∠CBF=∠FBO=∠OBE∵∠ABC=90°∠OBE=30°∴∠BEO=10°∠BAC=30°∵tan∠BAC=∴tan30°=即∴AB=1.考点:三角形全等的证明、锐角三角函数的应用.21、(1);(2)或,过程见解析;(3)【分析】(1)根据图形可知,阴影正方形的边长为小长方形的长与宽的差,写出即可求解;(2)根据完全平方公式的变形即可得到关系式;(3)根据,故求出,代入(2)中的公式即可求解.【详解】解:(1)∵阴影正方形的边长为小长方形的长与宽的差,即阴影正方形的边长为13-3=10∴;(2)结论:或∵,∴∴或;(3)∵,∴∴由(2)可知∴∵,∴.【点睛】本题考查了完全平方公式的几何背景,以及两个公式之间的关系,从整体与局部两种情况分析并写出面积的表达式是解题的关键.22、(1)原式=a2-2a;(2)原式=a(n-2)2.【解析】试题分析:(1)先把括号内的进行因式分解,然后把除法转化成乘法进行约分即可得解;(2)首先提取公因式a,再利用完全平方公式分解因式得出答案.试题解析:(1)原式=(a+2)(a-2)=a(a-2)=a2-2a;(2)原式=a[(n-1)2-2(n-1)+1]=a(n-1-1)2=a(n-2)2.23、(1);(2);(3)点的坐标为.【解析】(1)根据4分钟水量达到即可求解;(2)设与之间的函数关系式为,利用待定系数法即可求解;(3)求出出水管每分钟的出水量,再求出容器内的水全部放完的时间,得到C点坐标即可作图.【详解】(1)单独开进水管,每分钟可进水20÷4=故答案为:5;(2)设与之间的函数关系式为,将,代入中,得解,得,所以,与之间的函数关系式为.(3)设出水管每分钟的出水量为a,题意可得(12-4)×(5-a)=36-20解得a=3∴容器内的水全部放完的时间为36÷3=12(分钟)∴C如图,线段即为所求.【点睛】此题主要考查一次函数的应用,解题的关键是熟知待定系数法的应用.24、CE=2AD,证明详见解析【分析】延长AD至点N使DN=A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 婚宴女方父母婚礼致辞(3篇)
- 长城导游词(35篇)
- 监理资料员年度工作总结
- 领导力开发心得体会
- 满月酒庆典上的讲话稿(35篇)
- 读《三国演义》阅读心得体会(32篇)
- 相交线与平行线(题型归纳)(原卷版+解析)
- 26.4 解直角三角形的应用 同步练习
- 2024保育员(高级)复审考试题库(含答案)
- 云南省普洱市澜沧拉祜族自治县第一中学2024-2025学年高二上学期10月期中英语试题(含答案无听力原文及音频)
- 金属废料再利用技术介绍
- 风险投资在我国的发展课件
- 小学四年级数学面积应用题及图形面积题
- 国际经济与贸易职业规划报告
- 沙画手工课件
- 消毒供应中心进修后汇报
- 读书好书开启智慧之门
- 餐饮业挂靠合作协议范文
- 以人民为中心
- 消防安全平安你我
- 生态环境保护论文生态环境建设与水环境保护
评论
0/150
提交评论