2025届湖北省广水市八年级数学第一学期期末调研试题含解析_第1页
2025届湖北省广水市八年级数学第一学期期末调研试题含解析_第2页
2025届湖北省广水市八年级数学第一学期期末调研试题含解析_第3页
2025届湖北省广水市八年级数学第一学期期末调研试题含解析_第4页
2025届湖北省广水市八年级数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖北省广水市八年级数学第一学期期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在等边中,平分交于点,点E、F分别是线段BD,BC上的动点,则的最小值等于()A. B. C. D.2.若实数x,y,z满足,则下列式子一定成立的是()A.x+y+z=0 B.x+y-2z=0 C.y+z-2x=0 D.z+x-2y=03.如图,△ABC的面积为1cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.1.4cm2 B.1.5cm2 C.1.6cm2 D.1.7cm24.甲、乙两车从城出发匀速行驶至城.在整个行驶过程中,甲、乙两车离城的距离(千米)与甲车行驶的时间(小时)之间的函数关系如图所示.则下列结论:①两城相距千米;②乙车比甲车晚出发小时,却早到小时;③乙车出发后小时追上甲车;④当甲、乙两车相距千米时,其中正确的结论有()A.个 B.个 C.个 D.个5.如下图,将绕点顺时针方向旋转得,若,则等于()A. B. C. D.6.如图,设点P到原点O的距离为p,将x轴的正半轴绕O点逆时针旋转与OP重合,记旋转角为,规定[p,]表示点P的极坐标,若某点的极坐标为[2,135°],则该点的平面坐标为()

A.() B.() C.() D.()7.如图,在下列条件中,不能判定直线a与b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°8.如图,在△ABC中,∠ABC=90°,∠C=20°,DE是边AC的垂直平分线,连结AE,则∠BAE等于()A.20° B.40° C.50° D.70°9.如图,在△ABC和△DCB中,AC与BD相交于点O,下列四组条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.∠ABD=∠DCA,∠A=∠D10.如图是边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:)不正确的()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x__y(用“>”或“<”填空).1号2号12.如图,若∠1=∠D=39°,∠C=51°,则∠B=___________°;13.下列各式:①;②;③;④.其中计算正确的有__________(填序号即可).14.在植树活动中,八年级一班六个小组植树的棵树分别是:5,7,3,,6,4.已知这组数据的众数是5,则该组数据的方差是_________.15.若.则的平方根是_____.16.为使一个四边形木架不变形我们会从中钉一根木条,这是利用了三角形的____________.17.若,则以、为边长的等腰三角形的周长为______.18.把“全等三角形对应角相等”改为“如果……那么……”的形式________________________.三、解答题(共66分)19.(10分)我们定义:对角线互相垂直的四边形叫做垂美四边形.(1)如图1,垂美四边形ABCD的对角线AC,BD交于O.求证:AB2+CD2=AD2+BC2;(2)如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结BE,CG,GE.①求证:四边形BCGE是垂美四边形;②若AC=4,AB=5,求GE的长.20.(6分)某城市为创建国家卫生城市,需要购买甲、乙两种类型的分类垃圾桶(如图所示),据调查该城市的A、B、C三个社区积极响应号并购买,具体购买的数和总价如表所示.社区甲型垃圾桶乙型垃圾桶总价A1083320B592860Cab2820(1)运用本学期所学知识,列二元一次方程组求甲型垃圾桶、乙型垃圾桶的单价每套分别是多少元?(2)按要求各个社区两种类型的垃圾桶都要有,则a=.21.(6分)(1)先化简,再求值:其中.(2)解方程:.22.(8分)如图,直角坐标系xOy中,一次函数y=﹣x+4的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,3),过动点M(n,0)作x轴的垂线与直线l1和l2分别交于P、Q两点.(1)求m的值及l2的函数表达式;(2)当PQ≤4时,求n的取值范围;(3)是否存在点P,使S△OPC=2S△OBC?若存在,求出此时点P的坐标,若不存在,请说明理由.23.(8分)在等边△ABC中,点E在AB上,点D在CB延长线上,且ED=EC.(1)当点E为AB中点时,如图①,AEDB(填“﹥”“﹤”或“=”),并说明理由;(2)当点E为AB上任意一点时,如图②,AEDB(填“﹥”“﹤”或“=”),并说明理由;(提示:过点E作EF∥BC,交AC于点F)(3)在等边△ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,请你画出图形,并直接写出相应的CD的长.24.(8分)(1)如图1,在和中,点、、、在同一条直线上,,,,求证:.(2)如图2,在中,,将在平面内绕点逆时针旋转到的位置,使,求旋转角的度数.25.(10分)如图,在□ABCD中,AC交BD于点O,点E,点F分别是OA,OC的中点。求证:四边形BEDF为平行四边形26.(10分)如图,直线y=﹣2x+8分别交x轴,y轴于点A,B,直线yx+3交y轴于点C,两直线相交于点D.(1)求点D的坐标;(2)如图2,过点A作AE∥y轴交直线yx+3于点E,连接AC,BE.求证:四边形ACBE是菱形;(3)如图3,在(2)的条件下,点F在线段BC上,点G在线段AB上,连接CG,FG,当CG=FG,且∠CGF=∠ABC时,求点G的坐标.

参考答案一、选择题(每小题3分,共30分)1、A【分析】从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】解:如图,在BA上截取BG=BF,

∵∠ABC的平分线交AC于点D,

∴∠GBE=∠FBE,

在△GBE与△FBE中,∴△GBE≌△FBE(SAS),

∴EG=EF.

∴CE+EF=CE+EG≥CG.

如下图示,当有最小值时,即当CG是点C到直线AB的垂线段时,的最小值是又∵是等边三角形,是的角平分线,∴,∴,故选:A.【点睛】本题考查了轴对称的应用,通过构造全等三角形,把进行转化是解题的关键.2、D【解析】∵(x﹣z)2﹣4(x﹣y)(y﹣z)=1,∴x2+z2﹣2xz﹣4xy+4xz+4y2﹣4yz=1,∴x2+z2+2xz﹣4xy+4y2﹣4yz=1,∴(x+z)2﹣4y(x+z)+4y2=1,∴(x+z﹣2y)2=1,∴z+x﹣2y=1.故选D.3、B【详解】延长AP交BC于E,∵AP垂直∠B的平分线BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=91°,∴△ABP≌△BEP,∴S△ABP=S△BEP,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE=S△ABC=1.5,故选B.考点:1.等腰三角形的判定与性质;2.三角形的面积.4、B【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【详解】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且乙用时3小时,即比甲早到1小时,故①②都正确;

设甲车离开A城的距离y与t的关系式为y甲=kt,

把(5,300)代入可求得k=60,

∴y甲=60t,

设乙车离开A城的距离y与t的关系式为y乙=mt+n,

把(1,0)和(4,300)代入可得,解得,∴y乙=100t-100,

令y甲=y乙可得:60t=100t-100,解得t=2.5,

即甲、乙两直线的交点横坐标为t=2.5,

此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③错误;

令|y甲-y乙|=50,可得|60t-100t+100|=50,即|100-40t|=50,

当100-40t=50时,可解得t=,当100-40t=-50时,可解得t=,令y甲=50,解得t=,令y甲=250,解得t=,∴当t=时,y甲=50,此时乙还没出发,此时相距50千米,

当t=时,乙在B城,此时相距50千米,

综上可知当t的值为或或或时,两车相距50千米,故④错误;

综上可知正确的有①②共两个,

故选:B.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.5、C【分析】根据旋转的性质,得∠ACA′=43°,=∠A′,结合垂直的定义和三角形内角和定理,即可求解.【详解】∵将绕点顺时针方向旋转得,点A对应点A′,∴∠ACA′=43°,=∠A′,∵,∴∠A′=180°-90°-43°=47°,∴=∠A′=47°.故选C.【点睛】本题主要考查旋转的性质和三角形内角和定理,掌握旋转的性质以及三角形内角和等于180°,是解题的关键.6、B【分析】根据题意可得,,过点P作PA⊥x轴于点A,进而可得∠POA=45°,△POA为等腰直角三角形,进而根据等腰直角三角形的性质可求解.【详解】解:由题意可得:,,过点P作PA⊥x轴于点A,如图所示:∴∠PAO=90°,∠POA=45°,∴△POA为等腰直角三角形,∴PA=AO,∴在Rt△PAO中,,即,∴AP=AO=2,∴点,故选B.【点睛】本题主要考查平面直角坐标系点的坐标、勾股定理及旋转的性质,熟练掌握平面直角坐标系点的坐标、勾股定理及旋转的性质是解题的关键.7、C【详解】解:A.∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意B.∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,C.∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,D.∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,故选C.【点睛】本题考查平行线的判定,难度不大.8、C【分析】根据三角形内角和定理求出∠BAC,根据线段垂直平分线的性质求出CE=AE,求出∠EAC=∠C=20°,即可得出答案.【详解】∵在△ABC中,∠ABC=90°,∠C=20°,∴∠BAC=180°−∠B−∠C=70°,∵DE是边AC的垂直平分线,∠C=20°,∴CE=AE,∴∠EAC=∠C=20°,∴∠BAE=∠BAC−∠EAC=70°−20°=50°,故选C.【点睛】此题考查线段垂直平分线的性质,解题关键在于掌握其性质.9、D【分析】根据全等三角形的判定定理,逐一判断选项,即可得到结论.【详解】∵AB=DC,AC=BD,BC=CB,∴△ABC≌△DCB(SSS),故A选项正确;∵AB=DC,∠ABC=∠DCB,BC=CB,∴△ABC≌△DCB(SAS),故B选项正确;∵BO=CO,∴∠ACB=∠DBC,∵BC=CB,∠A=∠D∴△ABC≌△DCB(AAS),故C选项正确;∵∠ABD=∠DCA,∠A=∠D,BC=CB,不能证明△ABC≌△DCB,故D选项错误;故选:D.【点睛】本题主要考查三角形全等的判定定理,掌握SSS,SAS,AAS判定三角形全等,是解题的关键.10、A【解析】试题分析:正方形的对角线的长是,所以正方形内部的每一个点,到正方形的顶点的距离都有小于14.14,故答案选A.考点:正方形的性质,勾股定理.二、填空题(每小题3分,共24分)11、<【解析】如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x<y,故答案为<.12、129°【解析】∵∠1=∠D=39°,∴AB∥CD.∵∠C=51°,∴∠B=180°-51°=129°.13、①②③【分析】根据负整式指数幂、积的乘方、多项式乘以多项式、完全平方公式,分别进行计算,即可得到答案.【详解】解:①,正确;②,正确;③,正确;④,故④错误;∴计算正确的有:①②③;故答案为:①②③.【点睛】本题考查了整式的混合运算,负整数指数幂的运算法则,解题的关键是熟练掌握整式乘法的运算法则进行计算.14、【分析】根据众数、平均数、方差的定义进行计算即可.【详解】∵这组数据5、7、3、x、6、4的众数是5,∴x=5,∴这组数据5、7、3、5、6、4的平均数是=5,∴S2=[(5−5)2+(7−5)2+(3−5)2+(5−5)2+(6−5)2+(4−5)2]=,故答案为.【点睛】本题考查了众数、方差,掌握众数、平均数、方差的定义是解题的关键.15、【分析】先根据算术平方根的非负性、偶次方的非负性求出x、y的值,从而可得的值,再根据平方根的定义即可得.【详解】由题意得:,解得,则,因此,的平方根是,故答案为:.【点睛】本题考查了算术平方根的非负性、平方根等知识点,掌握理解算术平方根的非负性是解题关键.16、稳定性【分析】题中给出四边形的不稳定性,即可判断是利用三角形的稳定性.【详解】为使四边形木架不变形,从中钉上一根木条,让四边形变成两个三角形,因为三角形不变形,故应该是利用三角形的稳定性.故答案为:稳定性.【点睛】本题考查三角形稳定性的应用,关键在于熟悉三角形的基本性质.17、17【分析】先根据非负数的性质列式求出a、b的值,再分情况讨论求解即可.【详解】∵,∴a-3=0,7-b=0,解得a=3,b=7①若a=3是腰长,则底边为7,三角形的三边分别为3、3、7,∵3+3<7,∴3、3、7不能组成三角形。②若b=7是腰长,则底边为3,三角形的三边分别为7、7、3,能组成三角形,周长=7+7+3=17.∴以、为边长的等腰三角形的周长为17.【点睛】本题考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,难点在于要讨论求解.18、如果两个三角形是全等三角形,那么它们的对应角相等.

【解析】任何一个命题都可以写成“如果…那么…”的形式,如果是条件,那么是结论.

解:∵原命题的条件是:两个三角形是全等三角形,

结论是:对应角相等,

∴命题“全等三角形的对应角相等”改写成“如果…,那么…”的形式是如果两个三角形是全等三角形,那么它们的对应角相等.

三、解答题(共66分)19、(1)见解析;(2)①见解析;②GE=【分析】(1)由垂美四边形得出AC⊥BD,则∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,即可得出结论;

(2)①连接BG、CE相交于点N,CE交AB于点M,由正方形的性质得出AG=AC,AB=AE,∠CAG=∠BAE=90°,易求∠GAB=∠CAE,由SAS证得△GAB≌△CAE,得出∠ABG=∠AEC,由∠AEC+∠AME=90°,得出∠ABG+∠AME=90°,推出∠ABG+∠BMN=90°,即CE⊥BG,即可得出结论;

②垂美四边形得出CG2+BE2=CB2+GE2,由勾股定理得出BC==3,由正方形的性质得出CG=4,BE=5,则GE2=CG2+BE2-CB2=73,即可得出结果.【详解】(1)证明:∵垂美四边形ABCD的对角线AC,BD交于O,∴AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得:AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,∴AD2+BC2=AB2+CD2;(2)①证明:连接BG、CE相交于点N,CE交AB于点M,如图2所示:∵正方形ACFG和正方形ABDE,∴AG=AC,AB=AE,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,∵∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,∴∠ABG+∠BMN=90°,即CE⊥BG,∴四边形BCGE是垂美四边形;②解:∵四边形BCGE是垂美四边形,∴由(1)得:CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC===3,∵正方形ACFG和正方形ABDE,∴CG=AC=4,BE=AB=5,∴GE2=CG2+BE2﹣CB2=(4)2+(5)2﹣32=73,∴GE=.【点睛】本题是四边形综合题,主要考查了新概念“垂美四边形”、勾股定理、正方形的性质、全等三角形的判定与性质等知识;正确理解新概念“垂美四边形”、证明三角形全等是解题的关键.20、(1)甲型垃圾桶的单价每套为140元,乙型垃圾桶的单价每套为240元;(2)3或1.【分析】(1)设甲型垃圾桶的单价为x元,乙型垃圾桶的单价每套为y元,根据图表中的甲型、乙型垃圾桶的数量和它们的总价列出方程组即可解答;(2)根据图表中的数据列出关于a\b的二元一次方程,结合a、b的取值范围求整数解即可.【详解】(1)设甲型垃圾桶的单价每套为x元,乙型垃圾桶的单价每套为y元,根据题意,得解得答:甲型垃圾桶的单价每套为140元,乙型垃圾桶的单价每套为240元;(2)由题意,得140a+240b=2820整理得,7a+12b=141因为a、b都是整数,所以或答:a的值为3或1.故答案为3或1.【点睛】本题考查了二元一次方程组的实际应用,掌握解二元一次方程组的方法是解题的关键.21、(1)-2;(2)无解【分析】(1)先化简,再将x的值代入进行计算即可;(2)先化成整式方程,再解整式方程,再验根即可.【详解】(1)====把代入原式=-2;(2)6-(x+3)=0-x+3=0x=3,当x=3时,3-x=0,所以是原方程无解.【点睛】考查了分式的化简求值和解分式方程,解题关键是熟记正确化简分式和解方式方程的步骤.22、(1)m=2,l2的解析式为y=x;(2)0≤n≤4;(3)存在,点P的坐标(6,1)或(-2,5).【分析】(1)根据待定系数法,即可求解;(2)由l2与l1的函数解析式,可设P(n,﹣n+4),Q(n,n),结合PQ≤4,列出关于n的不等式,进而即可求解;(3)设P(n,﹣n+4),分两种情况:①当点P在第一象限时,②当点P在第二象限时,分别列关于n的一元一次方程,即可求解.【详解】(1)把C(m,3)代入一次函数y=﹣x+4,可得:3=﹣m+4,解得:m=2,∴C(2,3),设l2的解析式为y=ax,则3=2a,解得a=,∴l2的解析式为:y=x;(2)∵PQ∥y轴,点M(n,0),∴P(n,﹣n+4),Q(n,n),∵PQ≤4,∴|n+n﹣4|≤4,解得:0≤n≤4,∴n的取值范围为:0≤n≤4;(3)存在,理由如下:设P(n,﹣n+4),∵S△OBC=×4×2=4,S△OPC=2S△OBC,∴S△OPC=8,①当点P在第一象限时,∴S△OBP=4+8=12,∴×4n=12,解得:n=6,∴点P的坐标(6,1),②当点P在第二象限时,∴S△OBP=8-4=4,∴×4(-n)=4,解得:n=-2,∴点P的坐标(-2,5).综上所述:点P的坐标(6,1)或(-2,5).【点睛】本题主要考查一次函数的图象和性质与几何图形的综合,掌握待定系数法以及一次函数图象上点的坐标特征,是解题的关键.23、(1)=,理由见解析;(2)=,理由见解析;(3)见解析【分析】(1)根据等边三角形性质和等腰三角形的性质求出∠D=∠ECB=30°,求出∠DEB=30°,求出BD=BE即可;

(2)过E作EF∥BC交AC于F,求出等边三角形AEF,证△DEB和△ECF全等,求出BD=EF即可;

(3)当D在CB的延长线上,E在AB的延长线式时,由(2)求出CD=3,当E在BA的延长线上,D在BC的延长线上时,求出CD=1.【详解】解:(1)=,理由如下:∵ED=EC∴∠D=∠ECD∵△ABC是等边三角形∴∠ACB=∠ABC=60°∵点E为AB中点∴∠BCE=∠ACE=30°,AE=BE∴∠D=30°∴∠DEB=∠ABC-∠D=30°∴∠DEB=∠D∴BD=BE∴BD=AE(2)过点E作EF∥BC,交AC于点F∵△ABC是等边三角形∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,∠FEC=∠ECB∴∠EFC=∠EBD=120°∵ED=EC∴∠D=∠ECD∴∠D=∠FEC在△EFC和△DBE中∴△EFC≌△DBE∴EF=DB∵∠AEF=∠AFE=60°∴△AEF为等边三角形∴AE=EF∴DB=AE(3)解:CD=1或3,

理由是:分为两种情况:

①如图3,过A作AM⊥BC于M,过E作EN⊥BC于N,

则AM∥EN,

∵△ABC是等边三角形,

∴AB=BC=AC=1,

∵AM⊥BC,

∴BM=CM=BC=,

∵DE=CE,EN⊥BC,

∴CD=2CN,

∵AM∥EN,

∴△AMB∽△ENB,

∴,

∴,

∴BN=,

∴CN=1+=,

∴CD=2CN=3;

②如图4,作AM⊥BC于M,过E作EN⊥BC于N,

则AM∥EN,

∵△ABC是等边三角形,

∴AB=BC=AC=1,

∵AM⊥BC,

∴BM=CM=BC=,

∵DE=CE,EN⊥BC,

∴CD=2CN,

∵AM∥EN,

∴,

∴=,

∴MN=1,

∴CN=1-=,

∴CD=2CN=1,

即CD=3或1.【点睛】本题综合考查了等边三角形的性质和判定,等腰三角形的性质,全等三角形的性质和判定,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论