版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省淮安市洪泽区数学八年级第一学期期末教学质量检测模拟试题检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,△ABC中,AD垂直BC于点D,且AD=BC,BC上方有一动点P满足,则点P到B、C两点距离之和最小时,∠PBC的度数为()A.30° B.45° C.60° D.90°2.已知实数a、b满足a+b=2,ab=,则a﹣b=()A.1 B.﹣ C.±1 D.±3.下列根式中是最简二次根式的是A. B. C. D.4.如图,在中,,,点、分别在边、上,,点是边上一动点,当的值最小时,,则为()A. B. C. D.5.已知,则()A.4033 B.4035 C.4037 D.40396.的整数部分是,小数部分是,则的值是()A.7 B.1 C. D.107.如图,AB=AC,∠A=36°,AB的垂直平分线MN交AB于点M,交AC于点D,下列结论:①△BCD是等腰三角形;②BD是∠ABC的平分线;③DC+BC=AB;④△AMD≌△BCD,正确的是()A.①② B.②③ C.①②③ D.①②④8.下列各式中,正确的是()A.=±4 B.±=4 C. D.9.已知为的内角所对应的边,满足下列条件的三角形不是直角三角形的是()A. B.C. D.10.下列图案不是轴对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.若一个直角三角形的三边分别为x,4,5,则x=_____.12.命题:“三边分别相等的两个三角形全等”的逆命题________13.已知点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是__________。14.一组数据:1、2、4、3、2、4、2、5、6、1,它们的中位数为_____.15.探索题:已知(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,(x﹣1)(x4+x3+x2+x+1)=x5﹣1.则22018+22017+22016+…+23+22+2+1的值的个位数是_____.16.若多项式是一个完全平方式,则的值为_________.17.下表给出的是关于某个一次函数的自变量x及其对应的函数值y的部分对应值,x…﹣2﹣10…y…m2n…则m+n的值为_____.18.如图,在中,和的平分线相交于点,过作,交于点,交于点.若,则线段的长为______.三、解答题(共66分)19.(10分)如图,四边形中,.动点从点出发,以的速度向点移动,设移动的时间为秒.(1)当为何值时,点在线段的垂直平分线上?(2)在(1)的条件下,判断与的位置关系,并说明理由.20.(6分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,(1)尺规作图:作△ABC的角平分线AE,交CD于点F(不写作法,保留作图痕迹);(2)求证:△CEF为等腰三角形.21.(6分)如图,在平面直角坐标系中,,,(1)画出关于轴的对称图形,并写出点、的坐标(2)直接写出的面积(3)在轴负半轴上求一点,使得的面积等于的面积22.(8分)图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:
;(2)图2中,当∠D=50度,∠B=40度时,求∠P的度数.(3)图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.23.(8分)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,BP=cm,CQ=cm.(2)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(4)若点Q以(3)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次相遇?24.(8分)如图1.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,1),C(5,1).(1)直接写出点B关于x轴对称的对称点B1的坐标为,直接写出点B关于y轴对称的对称点B2的坐标为,直接写出△AB1B2的面积为;(2)在y轴上找一点P使PA+PB1最小,则点P坐标为;(3)图2是10×10的正方形网格,顶点在这些小正方形顶点的三角形为格点三角形,①在图2中,画一个格点三角形△DEF,使DE=10,EF=5,DF=3;②请直接写出在图2中满足①中条件的格点三角形的个数.25.(10分)平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.26.(10分)阅读下列材料:利用完全平方公式,可以将多项式变形为的形式,我们把这样的变形方法叫做多项式的配方法.运用多项式的配方法及平方差公式能对一些多项式进行分解因式.例如:根据以上材料,解答下列问题:(1)用多项式的配方法将化成的形式;(2)利用上面阅读材料的方法,把多项式进行因式分解;(3)求证:,取任何实数时,多项式的值总为正数.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据得出点P到BC的距离等于AD的一半,即点P在过AD的中点且平行于BC的直线l上,则此问题转化成在直线l上求作一点P,使得点P到B、C两点距离之和最小,作出点C关于直线l的对称点C’,连接BC’,然后根据条件证明△BCC’是等腰直角三角形即可得出∠PBC的度数.【详解】解:∵,∴点P到BC的距离=AD,∴点P在过AD的中点E且平行于BC的直线l上,作C点关于直线l的对称点C’,连接BC’,交直线l于点P,则点P即为到B、C两点距离之和最小的点,∵AD⊥BC,E为AD的中点,l∥BC,点C和点C’关于直线l对称,∴CC’=AD=BC,CC’⊥BC,∴三角形BCC’是等腰直角三角形,∴∠PBC=45°.故选B.【点睛】本题主要考查了轴对称变换—最短距离问题,根据三角形的面积关系得出点P在过AD的中点E且平行于BC的直线l上是解决此题的关键.2、C【解析】分析:利用完全平方公式解答即可.详解:∵a+b=2,ab=,∴(a+b)2=4=a2+2ab+b2,∴a2+b2=,∴(a-b)2=a2-2ab+b2=1,∴a-b=±1,故选C.点睛:本题考查了完全平方公式的运用,熟记公式结构是解题的关键.3、B【详解】A.=,故此选项错误;B.是最简二次根式,故此选项正确;C.=3,故此选项错误;D.=,故此选项错误;故选B.考点:最简二次根式.4、B【分析】延长至点,使,过点作于点,交于点,则此时的值最小.最后根据直角三角形的边角关系求解即可.【详解】如图,延长至点,使,过点作于点,交于点,则此时的值最小.在中,,.,,,.,.,,.,,.在中,,.,,.故选B.【点睛】本题考查了最短路径问题,涉及到最短路径问题,一般要考虑线段的性质定理,结合轴对称变换来解决,因此利用轴对称找到对称点是解题的关键.5、C【分析】根据得出a的值,再对2a+3进行运算化简即可.【详解】解:∵∴∴∴故答案为:C.【点睛】本题考查了代数式的运算,解题的关键是对2a+3进行化简.6、B【分析】由的整数部分是,小数部分是,即可得出x、y的值,然后代入求值即可.【详解】解:∵,∴的整数部分,小数部分,∴.故选:B.【点睛】本题主要考查实数,关键是运用求一个平方根的整数部分和小数部分的方法得出未知数的值,然后代入求值即可.7、C【分析】由等腰三角形的性质和垂直平分线的性质,结合三角形的内角和定理,以及全等三角形的判定,分别进行判断,即可得到答案.【详解】解:∵AB=AC,∠A=36°,∴∠ABC=∠C=,∵MN垂直平分AB,∴AD=BD,AM=BM,∴∠ABD=∠A=36°,∴∠DBC=36°,∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形,①正确;∵∠ABD=∠DBC=36°,∴BD平分∠ABC,②正确;∵BC=BD=AD,AB=AC,∴DC+BC=DC+AD=AC=AB;③正确;△AMD与△BCD不能证明全等,④错误;故正确的结论有:①②③;故选:C.【点睛】本题考查了等腰三角形的性质,垂直平分线的性质,三角形的内角和定理,全等三角形的判定,解题的关键是熟练掌握所学的性质进行解题.8、C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得.【详解】A、,此项错误;B、,此项错误;C、,此项正确;D、,此项错误;故选:C.【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键.9、C【分析】运用直角三角形的判定方法:当一个角是直角时,或两边的平方和等于第三条边的平方,也可得出它是直角三角形.分别判定即可.【详解】A、∵,∴,即,∴△ABC是直角三角形,故本选项符合题意;B、∵,∴∴a2+b2=c2,∴△ABC是直角三角形,故本选项不符合题意;C、∵∠A:∠B:∠C=5:4:3,又∵∠A+∠B+∠C=180°,∴最大角∠A=75°,∴△ABC不是直角三角形,故本选项符合题意;D、∵a=c,b=c,(c)2+(c)2=c2,∴a2+b2=c2,∴△ABC是直角三角形,故本选项不符合题意.故选:C.【点睛】此题主要考查了勾股定理的逆定理、直角三角形的判定方法,灵活的应用此定理是解决问题的关键.10、C【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【详解】解:A、是轴对称图形,不合题意;
B、是轴对称图形,不合题意;
C、不是轴对称图形,符合题意;
D、是轴对称图形,不合题意;
故选C.【点睛】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.二、填空题(每小题3分,共24分)11、3或【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边5既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即5是斜边或直角边的两种情况,然后利用勾股定理求解.【详解】解:设第三边为x,(1)若5是直角边,则第三边x是斜边,由勾股定理得:52+42=x2,∴x=;(2)若5是斜边,则第三边x为直角边,由勾股定理得:32+x2=52,∴x=3;∴第三边的长为3或.故答案为:3或.【点睛】本题主要考查的是勾股定理的简单应用,需注意解答时有两种情况.12、如果两个三角形全等,那么对应的三边相等【分析】将原命题的条件与结论互换即可得到其逆命题.【详解】∵原命题的条件是:三角形的三边分别相等,结论是:该三角形是全等三角形.∴其逆命题是:如果两个三角形全等,那么对应的三边相等.故答案为如果两个三角形全等,那么对应的三边相等.【点睛】本题考查逆命题的概念,以及全等三角形的判定和性质,解题的关键是熟知原命题的题设和结论.13、a<b【分析】先把点M(-1,a)和点N(-2,b)代入一次函数y=-2x+1,求出a,b的值,再比较出其大小即可.【详解】∵点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,∴a=(-2)×(-1)+1=3,b=(-2)×(-2)+1=5,3<5,∴a<b.故答案为:a<b.【点睛】本题考查的一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.14、2.1【分析】将数据重新排列,再根据中位数的定义求解可得.【详解】解:将这组数据重新排列为1、1、2、2、2、3、4、4、1、6,所以这组数据的中位数为=2.1,故答案为:2.1.【点睛】本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.15、7【分析】先按照题中的规律对原式进行变形,则原式=,再根据的个位数的规律得出结论即可.【详解】原式=的个位数字是2,4,8,6,2……每四个数一循环,所以∴的个位数字为8,∴的个位数字为7,∴的个位数字为7【点睛】本题主要考查利用规律对原式进行适当变形,然后再利用的规律找到个位上数字的规律,找到规律是解题的关键.16、-5或1【解析】试题解析:∵x2-(m-1)x+9=x2-(m-1)x+32,∴(m-1)x=±2×3×x,解得m=-5或1.17、1.【分析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【详解】设一次函数解析式为:y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入y=kx+b,得:﹣2k+b=m;﹣k+b=2;b=n;∴m+n=﹣2k+b+b=﹣2k+2b=2(﹣k+b)=2×2=1.故答案为:1.【点睛】本题主要考查一次函数的待定系数法,把m+n看作一个整体,进行计算,是解题的关键.18、2【分析】根据角平分线的定义可得∠DBF=∠FBC,∠ECF=∠FCB,由平行线的性质可得∠DFB=∠FBC,∠EFC=∠FCB,等量代换可得∠DFB=∠DBF,∠EFC=∠ECF,根据等角对等边可得到DF=DB,EF=EC,再由ED=DF+EF结合已知即可求得答案.【详解】∵BF、CF分别是∠ABC和∠ACB的角平分线,∴∠DBF=∠FBC,∠ECF=∠FCB,∵DE∥BC,∴∠DFB=∠FBC,∠EFC=∠FCB,∴∠DFB=∠DBF,∠EFC=∠ECF,∴DF=DB,EF=EC,∵ED=DF+EF,,∴EF=2,∴EC=2故答案为:2【点睛】本题考查了等腰角形的判定与性质,平行线的性质,角平分线的定义等,准确识图,熟练掌握和灵活运用相关知识是解题的关键.三、解答题(共66分)19、(1)当x=5时,点E在线段CD的垂直平分线上;(2)DE与CE的位置关系是DE⊥CE,理由见解析【分析】(1)根据垂直平分线的性质得出DE=CE,利用勾股定理得出,然后建立方程求解即可(2)根据第(1)问的结果,易证△ADE≌△BEC,根据全等三角形的性质有∠ADE=∠CEB,再通过等量代换可得∠AED+∠CEB=90°,进而求出∠DEC=90°,则可说明DE⊥CE.【详解】解:(1)∵点E在线段CD的垂直平分线上,∴DE=CE,∵∠A=∠B=90°解得∴当x=5时,点E在线段CD的垂直平分线上(2)DE与CE的位置关系是DE⊥CE;理由是:当x=5时,AE=2×5cm=10cm=BC,∵AB=25cm,DA=15cm,CB=10cm,∴BE=AD=15cm,在△ADE和△BEC中,∴△ADE≌△BEC(SAS),∴∠ADE=∠CEB,∵∠A=90°,∴∠ADE+∠AED=90°,∴∠AED+∠CEB=90°,∴∠DEC=180°-(∠AED+∠CEB)=90°,∴DE⊥CE.【点睛】本题主要考查勾股定理和全等三角形的判定及性质,掌握勾股定理和全等三角形的判定及性质是解题的关键.20、(1)详见解析;(2)详见解析.【分析】(1)以A为圆心,任意长为半径画弧交AC、AB于M、N,分别以M、N为圆心大于MN长为半径画弧,两弧交于点P,直线射线AP交BC于E,线段AE即为所求;4(2)只要证明∠CEF=∠CFE,即可推出CE=CF;【详解】(1)如图线段AE即为所求;(2)证明:∵CD⊥AB,∴∠BDC=∠ACB=90°,∴∠ACD+∠DCB=90°,∠DCB+∠B=90°,∴∠ACD=∠B,∵∠CFE=∠ACF+∠CAF,∠CEF=∠B+∠EAB,∠CAF=∠EAB,∴∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.【点睛】本题考查作图-基本作图,等腰三角形的判定等知识,解题的关键是熟练掌握五种基本作图,灵活运用所学知识解决问题.21、(1)画图见解析,、;(2)5;(3)【分析】(1)根据关于x轴对称的点的坐标特点,横坐标不变,纵坐标互为相反数,画图求解;(2)利用割补法求三角形面积;(3)设,采用割补法求△ABP面积,从而求解.【详解】解:(1)如图:、(2)∴的面积为5(3)设,建立如图△PMB,连接AM有图可得:∴解得:∴【点睛】本题考查画轴对称图形,三角形的面积计算,利用数形结合思想采用割补法解题是关键.22、(1)∠A+∠D=∠C+∠B;(2)∠P=45°;(3)2∠P=∠D+∠B.【解析】(1)根据三角形内角和定理即可得出∠A+∠D=∠C+∠B;(2)由(1)得,∠DAP+∠D=∠P+∠DCP①,∠PCB+∠B=∠PAB+∠P②,再根据角平分线的定义可得∠DAP=∠PAB,∠DCP=∠PCB,将①+②整理可得2∠P=∠D+∠B,进而求得∠P的度数;(3)同(2)根据“8字形”中的角的规律和角平分线的定义,即可得出2∠P=∠D+∠B.【详解】解(1)∵∠A+∠D+∠AOD=∠C+∠B+∠BOC=180°,∠AOD=∠BOC,∴∠A+∠D=∠C+∠B;(2)由(1)得,∠DAP+∠D=∠P+∠DCP,①∠PCB+∠B=∠PAB+∠P,②∵∠DAB和∠BCD的平分线AP和CP相交于点P,∴∠DAP=∠PAB,∠DCP=∠PCB,①+②得:∠DAP+∠D+∠PCB+∠B=∠P+∠DCP+∠PAB+∠P,即2∠P=∠D+∠B=50°+40°,∴∠P=45°;
(3)关系:2∠P=∠D+∠B;证明过程同(2).23、(1)BP=3cm,CQ=3cm;(2)全等,理由详见解析;(3);(4)经过s点P与点Q第一次相遇.【分析】(1)速度和时间相乘可得BP、CQ的长;(2)利用SAS可证三角形全等;(3)三角形全等,则可得出BP=PC,CQ=BD,从而求出t的值;(4)第一次相遇,即点Q第一次追上点P,即点Q的运动的路程比点P运动的路程多10+10=20cm的长度.【详解】解:(1)BP=3×1=3㎝,CQ=3×1=3㎝(2)∵t=1s,点Q的运动速度与点P的运动速度相等∴BP=CQ=3×1=3cm,∵AB=10cm,点D为AB的中点,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∴△BPD≌△CQP(SAS)(3)∵点Q的运动速度与点P的运动速度不相等,∴BP与CQ不是对应边,即BP≠CQ∴若△BPD≌△CPQ,且∠B=∠C,则BP=PC=4cm,CQ=BD=5cm,∴点P,点Q运动的时间t=s,∴cm/s;(4)设经过x秒后点P与点Q第一次相遇.由题意,得x=3x+2×10,解得∴经过s点P与点Q第一次相遇.【点睛】本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程.24、(1)(2,﹣1),(﹣2,1),7;(2)(0,);(3)①见解析;②8【分析】(1)根据关于x轴、y轴对称的点的坐标特征即可得到结论;(2)根据轴对称的性质得到B3(﹣2,﹣1),求得直线AB3的解析式,求出直线AB3与y轴的交点即可得到结论;(3)①借助勾股定理确定三边长,发现最长的边为10×10的正方形网格的对角线,然后以对角线的两个顶点为圆心,分别以为半径画圆,交点即为所求的F点,以此画出图形即可;②在10×10的正方形网格中找出所以满足条件的三角形即可确定答案.【详解】解:(1)∵B(2,1),∴点B关于x轴对称的对称点B1的坐标为(2,﹣1),点B关于y轴对称的对称点B2的坐标为(﹣2,1),△AB1B2的面积=4×4﹣×2×3﹣×1×4﹣×2×4=7,(2)作点B1关于y轴的对称
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 店长年度考核的个人总结范文(3篇)
- 珠宝行业工作计划6篇
- 高中技术《第二章流程与设计》单元检测
- 有关辅导员开学的讲话稿范文(3篇)
- 新教材高考地理二轮复习二7类选择题技法专项训练技法2直选法含答案
- 第24章 解直角三角形 综合检测
- 第二十六章 解直角三角形 综合检测
- 山西省太原市2024-2025学年高三上学期期中物理试卷(含答案)
- 河南省周口市扶沟县2024-2025学年六年级上学期11月期中道德与法治试题
- 2024-2025中山市共进联盟七年级上期中考试生物试卷
- 《新概念英语》第二册(电子版)
- 活性焦过滤吸附法污水深处理技术
- 国民经济动员中心申报材料
- 初中英语学科关键能力的培养策略
- 高血压健康教育知识讲座(完整版)
- 社区卫生服务中心公共卫生绩效考核及奖金分配制度
- 外贸_询盘的分析与回复(精)
- 基于HTML5技术的动漫宣传介绍网站的设计与实现
- 江苏省电力公司配电网管理规范实施细则
- 中山纪念堂英文导游词
- 汇编语言基础ASM
评论
0/150
提交评论