版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古锡林郭勒市2025届数学八年级第一学期期末质量跟踪监视模拟试题视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.不等式的解集在数轴上表示,正确的是()A. B.C. D.2.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.2.5 B.3 C.3.5 D.43.如图,小明书上的三角形被墨迹遮挡了一部分,测得两个角的度数为32°、74°,于是他很快判断这个三角形是()A.等边三角形 B.等腰三角形 C.直角三角形 D.钝角三角形4.如图,△ABC中,∠C=90°,∠BAC的角平分线交BC于点D,DE⊥AB于点E.若CD=2,AB=7,则△ABD的面积为()A.3.5 B.7 C.14 D.285.在下列图形中是轴对称图形的是()A. B.C. D.6.如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一个点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点可能是()A.点A B.点B C.点C D.点D7.已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1 B.2 C.3 D.48.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为()A.35° B.45° C.55° D.60°9.等边三角形的两个内角的平分线所夹的钝角的度数为()A. B. C. D.10.边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为()A. B. C. D.11.若,那么().A.1 B. C.4 D.312.若一个三角形的两边长分别是2和3,则第三边的长可能是()A.6B.5C.2D.1二、填空题(每题4分,共24分)13.若关于x的分式方程=1的解是非负数,则m的取值范围是_____.14.已知点P(a,b)在一次函数y=2x﹣1的图象上,则4a﹣2b+1=_____.15.点P(3,﹣5)关于x轴对称的点的坐标为______.16.某学校八年级班学生准备在植树节义务植树棵,原计划每小时植树棵,实际每小时植树的棵数是原计划的倍,那么实际比原计划提前了__________小时完成任务.(用含的代数式表示).17.已知一直角三角形的两边分别为3和4,则第三边长的平方是__________;18.如图,OC平分∠AOB,D为OC上一点,DE⊥OB于E,若DE=7,则D到OA的距离为____.三、解答题(共78分)19.(8分)综合与探究:如图1,一次函数的图象与x轴和y轴分别交于A,B两点,再将△AOB沿直线CD对折,使点A与点B重合.直线CD与x轴交于点C,与AB交于点D(1)求点A和点B的坐标(2)求线段OC的长度(3)如图2,直线l:y=mx+n,经过点A,且平行于直线CD,已知直线CD的函数关系式为,求m,n的值20.(8分)请用无刻度的直尺在下列方格中画一条线段将梯形面积平分(画出三种不同的画法).21.(8分)某学校为了丰富学生课余生活,开展了“第二课堂”活动,推出了以下四种选修课程:、绘画;、唱歌;、演讲;、书法.学校规定:每个学生都必须报名且只能选择其中的一个课程.学校随机抽查了部分学生,对他们选择的课程情况进行了统计,并绘制了如下两幅不完整的统计图,请结合统计图中的信息解决下列问题:(1)这次抽查的学生人数是多少人?(2)将条形统计图补充完整;(3)在扇形统计图中,求选课程的人数所对的圆心角的度数;(4)如果该校共有1200名学生,请你估计该校报课程的学生约有多少人?22.(10分)计算(1)(2)已知:,求的值.23.(10分)在△ABC中,∠ABC=45°,F是高AD与高BE的交点.(1)求证:△ADC≌△BDF.(2)连接CF,若CD=4,求CF的长.24.(10分)已知,在中,,点为边的中点,分别交,于点,.(1)如图1,①若,请直接写出______;②连接,若,求证:;(2)如图2,连接,若,试探究线段和之间的数量关系,并说明理由.25.(12分)全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了,两种型号的空气净化器,已知一台型空气净化器的进价比一台型空气净化器的进价多300元,用7500元购进型空气净化器和用6000元购进型空气净化器的台数相同.(1)求一台型空气净化器和一台型空气净化器的进价各为多少元?(2)在销售过程中,型空气净化器因为净化能力强,噪声小而更受消费者的欢迎.商社电器计划型净化器的进货量不少于20台且是型净化器进货量的三倍,在总进货款不超过5万元的前提下,试问有多少种进货方案?26.如图,点A,C,D,B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.
参考答案一、选择题(每题4分,共48分)1、B【分析】先解不等式,再结合数轴判断即可.【详解】解:,,解得:,故选B.【点睛】本题考查一元一次不等式的解法以及在数轴上的表示,熟练掌握解法是关键.2、B【分析】作DH⊥AC于H,如图,利用角平分线的性质得DH=DE=2,根据三角形的面积公式得×2×AC+×2×4=7,于是可求出AC的值.【详解】解:作DH⊥AC于H,如图,
∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DH⊥AC,
∴DH=DE=2,
∵S△ABC=S△ADC+S△ABD,
∴×2×AC+×2×4=7,
∴AC=1.
故选:B.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.这里的距离是指点到角的两边垂线段的长.3、B【分析】根据三角形的内角和是180°,求得第三个内角的度数,然后根据角的度数判断三角形的形状.【详解】第三个角的度数=180°-32°-74°=74°,所以,该三角形是等腰三角形.故选B.【点睛】此题考查了三角形的内角和公式以及三角形的分类.4、B【分析】根据角平分线的性质得出DE=CD=2,根据三角形的面积公式求出即可.【详解】解:∵△ABC中,∠C=90°,∠BAC的角平分线交BC于点D,DE⊥AB于点E,CD=2,∴DE=CD=2,∵AB=7,∴△ABD的面积是:==7,故选:B.【点睛】本题是对角平分线性质的考查,熟练掌握角平分线的性质是解决本题的关键.5、B【分析】根据轴对称图形的概念求解.【详解】A.不是轴对称图形,故本选项不符合题意,B.是轴对称图形,故本选项符合题意,C.不是轴对称图形,故本选项不符合题意,D.是不轴对称图形,故本选项不符合题意.故选B.【点睛】本题考查了轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6、D【分析】直接利用已知网格结合三个点中存在两个点关于一条坐标轴对称,可得出原点位置.【详解】如图所示:原点可能是D点.故选D.【点睛】此题主要考查了关于坐标轴对称点的性质,正确建立坐标系是解题关键.7、D【分析】①由AB=AC,AD=AE,利用等式的性质得到夹角相等,利用SAS得出△ABD≌△ACE,由全等三角形的对应边相等得到BD=CE;②由△ABD≌△ACE得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD垂直于CE;③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°;④由题意,∠BAE+∠DAC=360°-∠BAC-∠DAE=180°.【详解】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,本选项正确;②∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,本选项正确;③∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,本选项正确;④由题意,∠BAE+∠DAC=360°-∠BAC-∠DAE=360°-90°-90°=180°,本选项正确;故选D.【点睛】本题考查了全等三角形的判定与性质以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.8、C【解析】试题分析:根据等腰三角形的三线合一的性质可直接得到AD平分∠BAC,AD⊥BC,因此∠DAC=∠BAD=35°,∠ADC=90°,从而可求得∠C=55°.故选C考点:等腰三角形三线合一9、D【分析】画出图形,根据内角平分线的定义求出∠OBC和∠OCB的度数,再根据三角形的内角和定理求出∠BOC的度数.【详解】如图:∵∠ABC=∠ACB=,BO、CO是两个内角的平分线,∴∠OBC=∠OCB=30,∴在△OBC中,∠BOC=180−30−30=.故选D.【点睛】本题考查了等边三角形的性质,知道等边三角形的每个内角是60度是解题的关键.10、A【解析】连接AD、DB、DF,求出∠AFD=∠ABD=90°,根据HL证两三角形全等得出∠FAD=60°,求出AD∥EF∥GI,过F作FZ⊥GI,过E作EN⊥GI于N,得出平行四边形FZNE得出EF=ZN=a,求出GI的长,求出第一个正六边形的边长是a,是等边三角形QKM的边长的;同理第二个正六边形的边长是等边三角形GHI的边长的;求出第五个等边三角形的边长,乘以即可得出第六个正六边形的边长.连接AD、DF、DB.∵六边形ABCDEF是正六边形,∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt△ABD和RtAFD中∴Rt△ABD≌Rt△AFD(HL),∴∠BAD=∠FAD=×120°=60°,∴∠FAD+∠AFE=60°+120°=180°,∴AD∥EF,∵G、I分别为AF、DE中点,∴GI∥EF∥AD,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是a,即等边三角形QKM的边长的,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN=a,∵GF=AF=×a=a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ=GF=a,同理IN=a,∴GI=a+a+a=a,即第二个等边三角形的边长是a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是×a;同理第第三个等边三角形的边长是×a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是××a;同理第四个等边三角形的边长是××a,第四个正六边形的边长是×××a;第五个等边三角形的边长是×××a,第五个正六边形的边长是××××a;第六个等边三角形的边长是××××a,第六个正六边形的边长是×××××a,即第六个正六边形的边长是×a,故选A.11、C【分析】由非负数之和为0,可得且,解方程求得a,b,代入a-b问题得解.【详解】解:,且,解得,,,故选:C【点睛】本题考查了代数式的值,正确理解绝对值及算数平方根的非负性是解答本题的关键.12、C【解析】根据三角形的三边关系求得第三边的取值范围解答即可.【详解】解:设第三边长x.
根据三角形的三边关系,得1<x<1.
故选:C.【点睛】本题主要考查三角形三边关系的知识点,已知三角形的两边长,则第三边的范围为大于两边差且小于两边和.二、填空题(每题4分,共24分)13、m≥﹣4且m≠﹣1【解析】分式方程去分母转化为整式方程,由分式的解是非负数确定出m的范围即可.【详解】去分母得:m+1=x﹣1,解得:x=m+4,由分式方程的解为非负数,得到m+4≥0,且m+4≠1,解得:m≥﹣4且m≠﹣1.故答案为:m≥﹣4且m≠﹣1【点睛】本题考查分式方程的解,解一元一次不等式,解决此题时一定要注意解分式方程时分式的分母不能为0.14、1【分析】直接把点P(a,b)代入一次函数y=2x﹣1,可求b=2a﹣1,即可求4a﹣2b+1=1.【详解】解:∵点P(a,b)在一次函数y=2x﹣1的图象上,∴b=2a﹣1∴4a﹣2b+1=4a﹣2(2a﹣1)+1=1故答案为1【点睛】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.15、(3,5)【解析】试题解析:点关于x轴对称的点的坐标为故答案为点睛:关于x轴对称的点的坐标特征:横坐标不变,纵坐标互为相反数.16、【分析】等量关系为:原计划时间-实际用时=提前的时间,根据等量关系列式.【详解】由题意知,原计划需要小时,实际需要小时,
故提前的时间为,
则实际比原计划提前了小时完成任务.故答案为:.【点睛】本题考查了列分式,找到等量关系是解决问题的关键,本题还考查了工作时间=工作总量÷工效这个等量关系.17、25或7【解析】试题解析:①长为3的边是直角边,长为4的边是斜边时:第三边长的平方为:②长为3、4的边都是直角边时:第三边长的平方为:综上,第三边长的平方为:25或7.故答案为25或7.18、1.【分析】从已知条件开始思考,结合角平分线上的点到角两边的距离相等可知D到OA的距离为1.【详解】解:∵OC平分∠AOB,D为OC上任一点,且DE⊥OB,DE=1,∴D到OA的距离等于DE的长,即为1.故答案为:1.【点睛】本题考查了角平分线的性质;熟练掌握角平分线的性质,是正确解题的前提.三、解答题(共78分)19、(1);(2);(3)的值分别为:【分析】(1)令y=0求出x的值,再令x=0求出y的值,即可求出A、B两点的坐标;(2)设OC=x,根据翻折变换的性质用x表示出BC的长,再根据勾股定理求解即可;(3)由两条直线平行,可直接得到m的值,然后把点A代入,即可求出n的值.【详解】解:对于一次函数,当时,解得:,当时,,解得:,在中,,,设则,在中,∵,,,;∵直线的函数解析式为:,直线平行于直线.,∵直线经过点,,;∴的值分别为:.【点睛】本题考查了一次函数的图像和性质,勾股定理,坐标与图形,以及两直线平行的特征,解题的关键是熟练掌握一次函数的图像和性质进行解题.20、见解析【分析】利用数形结合的思想解决问题即可.【详解】解:由题意梯形的面积为18,剪一个三角形面积为9即可;取两底的中点,连接这两个点得到的线段平分梯形的面积.【点睛】本题考查作图应用与设计,梯形的面积,三角形的面积等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.21、(1)这次抽查的学生人数是40人;(2)图见解析;(3)36°;(4)该校报课程的学生约有420人【分析】(1)根据选择课程A的人数和所占抽查学生总人数的百分率即可求出这次抽查的学生人数;(2)用抽查学生总人数减去选课程A、选课程B、选课程D的人数,即可求出选课程C的人数,然后补全条形统计图即可;(3)求出选课程D的人数占抽查学生总人数的分率,再乘360°即可;(4)求出选课程B的人数占抽查学生总人数的分率,再乘该校总人数即可.【详解】解:(1)这次抽查的学生人数为:12÷30%=40人答:这次抽查的学生人数是40人.(2)选课程C的人数为:40-12-14-4=10人补全条形统计图,如下(3)选课程的人数所对的圆心角的度数为答:选课程的人数所对的圆心角的度数36°.(4)该校报课程的学生约有人答:该校报课程的学生约有420人.【点睛】此题考查的是条形统计图和扇形统计图,结合条形统计图和扇形统计图得出有用信息是解决此题的关键.22、(1);(2)1.【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出和的值,再利用完全平方公式进行化简求值即可得.【详解】(1)原式,,,;(2),,,则,,,.【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.23、(1)见解析;(2)4【分析】(1)先证明AD=BD,再证明∠FBD=∠DAC,从而利用ASA证明△BDF≌△ADC;(2)利用全等三角形对应边相等得出DF=CD=4,根据勾股定理求出CF即可.【详解】(1)证明:∵AD⊥BC,∴∠FDB=∠ADC=90°,∵∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,∵BE⊥AC,∴∠AEF=∠FDB=90°,∵∠AFE=∠BFD,∴由三角形内角和定理得:∠CAD=∠FBD,在△ADC和△BDE中∴△ADC≌△BDE(ASA);(2)解:∵△ADC≌△BDE,CD=4,∴DF=CD=4,在Rt△FDC中,由勾股定理得:CF===4.【点睛】此题主要考查等腰三角形的性质与证明,解题的关键是熟知全等三角形的判定与性质及等腰三角形的性质.24、(1)①45°;②见解析;(2),理由见解析【分析】(1)①利用直角三角形两个锐角相加得和三角形的外角等于不相邻的两个内角和的性质结合题干已知即可解题.②延长至点,使得,连接,从而可证明≌(SAS),再利用全等的性质,可知,即可知道,所以,根据题干又
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 科技园区给排水系统招投标文件
- 城市地铁设施故障应对
- 医院急诊室电气安全管理制度
- 道路桥梁检测项目招投标文件
- 学校扩建项目临时围挡施工合同
- 石油勘探设备校正与维护操作规程
- 实验室危险品使用与管理
- 交通运输业关联交易管理办法
- 眼镜店门头改造合同
- 海参养殖非政府组织合作合同
- 《矿井一通三防》课件
- 通信工程专业导论(第1-3章)
- 智慧课堂 课件 第四章 智慧课堂支撑环境 第二节 云端一体化智慧教与学平台
- 智鼎在线测评IQT题库
- 《学习的概述》课件
- 消防应急照明系统施工方案
- 临床中西医结合疾病诊断与治疗
- 教科版三年级科学上册全册单元测试卷及答案
- 《手表基础知识》课件
- 骨折内固定取出护理查房
- 《基本医疗卫生与健康促进法》试题
评论
0/150
提交评论