版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省驻马店市遂平县第一初级中学八年级数学第一学期期末综合测试模拟试题期期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.对于命题“已知:a∥b,b∥c,求证:a∥c”.如果用反证法,应先假设()A.a不平行b B.b不平行c C.a⊥c D.a不平行c2.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为()A.1cm B.2cm C.3cm D.4cm3.下列实数中,无理数是()A.3.14 B.2.12122 C. D.4.下列命题:①有一条直角边和斜边对应相等的两个直角三角形全等;②周长相等的两个三角形是全等三角形③全等三角形对应边上的高、中线、对应角的角平分线相等;其中正确的命题有()A.个 B.个 C.个 D.个5.如图,∠x的两条边被一直线所截,用含α和β的式子表示∠x为()A.α-β B.β-α C.180°-α+β D.180°-α-β6.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是().A.众数是6吨 B.平均数是5吨 C.中位数是5吨 D.方差是7.如图,在中,,,是的中垂线,是的中垂线,已知的长为,则阴影部分的面积为()A. B. C. D.8.已知□ABCD的周长为32,AB=4,则BC的长为()A.4 B.12 C.24 D.289.等边三角形的两个内角的平分线所夹的钝角的度数为()A. B. C. D.10.若分式的值为1.则x的值为()A.1 B.﹣1 C.±1 D.111.如图,在△ABC中,AB=AC,以B为圆心,BC长为半径画弧,交AC于点D,则下列结论一定正确的是()A.AD=DC B.AD=BD C.∠DBC=∠A D.∠DBC=∠ABD12.若将实数,,,这四个数分别表示在数轴上,则其中可能被如图所示的墨迹覆盖的数是().A. B. C. D.二、填空题(每题4分,共24分)13.分解因式:=_____;14.已知、满足,,则的值等于_______.15.若,,,则的大小关系用“<”号排列为_________.16.如图,在△ABC中,AB=AC,AB的垂直平分线DE交CA的延长线于点E,垂足为D,∠C=26°,则∠EBA=_____°.17.在平面直角坐标系中,已知两点的坐标分别为,若点为轴上一点,且最小,则点的坐标为__________.18.李华同学在解分式方程去分母时,方程右边的没有乘以任何整式,若此时求得方程的解为,则的值为___________.三、解答题(共78分)19.(8分)如图与x轴相交于点A,与y轴交于点B,求A、B两点的坐标;点为x轴上一个动点,过点C作x轴的垂线,交直线于点D,若线段,求a的值.20.(8分)如图,点为上一点,,,,求证:.21.(8分)化简并求值:,其中x=﹣1.22.(10分)基本运算(1)分解因式:①②(2)整式化简求值:求[]÷的值,其中无意义,且.23.(10分)化简:(1)(-2ab)(3a2-2ab-4b2);(2)3x(2x-3y)-(2x-5y)·4x.24.(10分)在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.25.(12分)某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲、乙两队合作完成该工程需要多少天?26.如图1,已知△ABC和△EFC都是等边三角形,且点E在线段AB上.(1)求证:BF∥AC;(2)过点E作EG∥BC交AC于点G,试判断△AEG的形状并说明理由;(3)如图2,若点D在射线CA上,且ED=EC,求证:AB=AD+BF.
参考答案一、选择题(每题4分,共48分)1、D【分析】用反证法进行证明;先假设原命题不成立,本题中应该先假设a不平行c,由此即可得答案.【详解】直线a,c的位置关系有平行和不平行两种,因而a∥c的反面是a与c不平行,因此用反证法证明“a∥c”时,应先假设a与c不平行,故选D.【点睛】本题结合直线的位置关系考查反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.2、C【解析】试题分析:∵MN是线段AB的垂直平分线,∴AN=BN,∵△BCN的周长是7cm,∴BN+NC+BC=7(cm),∴AN+NC+BC=7(cm),∵AN+NC=AC,∴AC+BC=7(cm),又∵AC=4cm,∴BC=7﹣4=3(cm).故选C.考点:线段垂直平分线的性质.3、C【解析】根据无理数的三种形式,结合选项找出无理数的选项.【详解】3.14和2.12122和都是分数,是有理数;无理数是,故选:C.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.4、B【分析】逐项对三个命题判断即可求解.【详解】解:①有一条直角边和斜边对应相等的两个直角三角形()全等,故①选项正确;②全等三角形为能够完全重合的三角形,周长相等不一定全等,故②选项错误;③全等三角形的性质为对应边上的高线,中线,角平分线相等,故③选项正确;综上,正确的为①③.故选:B.【点睛】本题考查了全等三角形的判定与性质,熟知全等三角形的判定定理和性质定理是解题关键.5、B【解析】β为角x和α的对顶角所在的三角形的外角,根据三角形一个外角等于和它不相邻的两个内角的和可知:x=β﹣α.故选B.考点:三角形的外角性质.6、C【解析】试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].数据:3,4,5,6,6,6,中位数是5.5,故选C考点:1、方差;2、平均数;3、中位数;4、众数7、B【分析】根据线段垂直平分线的性质可得NB=NA,QA=QC,然后求出∠ANQ=30°,∠AQN=60°,进而得到∠NAQ=90°,然后根据含30度角的直角三角形的性质设AQ=x,NQ=2x,得到AN=,结合求出x的值,得到AQ、AN的值,进而利用三角形面积公式可得答案.【详解】解:∵是的中垂线,是的中垂线,∴NB=NA,QA=QC,∴∠NBA=∠NAB=15°,∠QAC=∠QCA=30°,∴∠ANQ=15°+15°=30°,∠AQN=30°+30°=60°,∴∠NAQ=180°-30°-60°=90°,设AQ=x,则NQ=2x,∴AN=,∴BC=NB+NQ+QC=AN+NQ+AQ=3x+=,∴x=1,∴AQ=1,AN=,∴阴影部分的面积=,故答案为:.【点睛】本题主要考查了线段垂直平分线的性质、三角形外角的性质、三角形内角和定理、含30度角的直角三角形的性质以及三角形面积公式等知识,灵活运用相关性质定理进行推理计算是解题关键.8、B【分析】根据平行四边形的性质得AB=CD,AD=BC,根据2(AB+BC)=32即可求解【详解】∵四边形ABCD是平行四边形∴AB=CD,AD=BC∵平行四边形ABCD的周长是32∴2(AB+BC)=32∴BC=12故正确答案为B【点睛】此题主要考查平行四边形的性质9、D【分析】画出图形,根据内角平分线的定义求出∠OBC和∠OCB的度数,再根据三角形的内角和定理求出∠BOC的度数.【详解】如图:∵∠ABC=∠ACB=,BO、CO是两个内角的平分线,∴∠OBC=∠OCB=30,∴在△OBC中,∠BOC=180−30−30=.故选D.【点睛】本题考查了等边三角形的性质,知道等边三角形的每个内角是60度是解题的关键.10、B【分析】根据分式的值为2的条件列出关于x的不等式组,求出x的值即可.【详解】解:∵分式的值为2,∴,解得x=﹣2.故选:B.【点睛】本题考查解分式求值,需要注意分母不为零的情况.11、C【分析】根据等腰三角形的性质可得,再结合三角形的内角和定理可得.【详解】∵以B为圆心,BC长为半径画弧故选:C.【点睛】本题考查了等腰三角形的性质(等边对等角)、三角形的内角和定理,熟记等腰三角形的相关性质是解题关键.12、B【分析】根据算术平方根的概念分别估算各个实数的大小,根据题意判断.【详解】<0,2<<3,3<<4,3<<4,∴可能被如图所示的墨迹覆盖的数是,故选:B.【点睛】本题考查的是实数和数轴,算术平方根,正确估算算术平方根的大小是解题的关键.二、填空题(每题4分,共24分)13、2a(a+1)(a-1)【分析】先提取公因式2a,再对余下的多项式利用平方差公式继续分解.【详解】解:2a3-2a
=2a(a2-1)
=2a(a+1)(a-1).
故答案为2a(a+1)(a-1).【点睛】本题考查用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14、或.【分析】分两种情况:当时,由,,构造一元二次方程,则其两根为,利用根与系数的关系可得答案,当时,代入代数式即可得答案,【详解】解:时,、满足,,、是关于的方程的两根,,,则当时,原式的值等于或.故答案为:或.【点睛】本题考查的是利用一元二次方程的根与系数的关系求代数式的值,掌握分类讨论,一元二次方程的构造是解题的关键.15、a<b<c【分析】利用平方法把三个数值平方后再比较大小即可.【详解】解:∵a2=2000+2,b2=2000+2,c2=4004=2000+2×1002,1003×997=1000000-9=999991,1001×999=1000000-1=999999,10022=1.
∴a<b<c.故答案为:a<b<c.【点睛】这里注意比较数的大小可以用平方法,两个正数,平方大的就大.此题也要求学生熟练运用完全平方公式和平方差公式.16、1【分析】先根据等边对等角求得∠ABC=∠C=26°,再利用三角形的外角的性质求得∠EAB=1°,再根据垂直平分线的性质得:EB=EA,最后再运用等边对等角,即可解答.【详解】解:∵AB=AC,∴∠ABC=∠C=26°,∵∠EAB=∠ABC+∠C=1°,∵DE垂直平分AB,∴EB=EA,∴∠EBA=∠EAB=1°,故答案为1.【点睛】本题考查了等腰三角形和垂直平分线的性质,其中掌握等腰三角形的性质是解答本题的关键.17、【解析】可过点A作关于x轴的对称点A′,连接A′B与轴的交点即为所求.【详解】如图,作点A作关于x轴的对称点A′,连接A′B与x轴的交于点M,点M即为所求.∵点B的坐标(3,2)点A′的坐标(-1,-1),∴直线BA′的解析式为y=x-,令y=0,得到x=,∴点M(,0),故答案为:(,0).【点睛】此题考查轴对称问题,熟练掌握轴对称的性质,理解两点之间线段最短的涵义.18、−2或−1【分析】先按李华同学的方法去分母,再将x=3代入方程,即可求得m的值.注意因为x−2=−(2−x),所以本题要分两种情况进行讨论.【详解】解答:解:按李华同学的方法,分两种情况:①方程两边同乘(x−2),得2x−3+m=1,把x=3代入得6−3+m=1,解得m=−2;②方程两边同乘(2−x),得−2x+3−m=1,把x=3代入得−6+3−m=1,解得m=−1.故答案为:−2或−1.【点睛】本题考查了解分式方程的思想与解一元一次方程的能力,既是基础知识又是重点.由于方程中两个分母互为相反数,所以去分母时,需分情况讨论,这是本题的关键.三、解答题(共78分)19、(1)A,B;(2)1或.【分析】(1)由函数解析式y=2x+3,令y=0求得A点坐标,x=0求得B点坐标;(2)可知D的横坐标为a,则纵坐标为2a+3,由CD=5得出|2a+3|=5,从而求出a.【详解】解:由题得:当时,,点的坐标为,当时,,点的坐标为;由题得,点D的横坐标为:a,则纵坐标为,解得:,,的值为1,或.故答案为(1)A,B;(2)1或.【点睛】本题主要考查了函数图象中坐标的求法以及线段长度的表示法.20、详见解析【分析】根据同角的补角相等可得∠DBA=∠BEC,然后根据平行线的性质可得∠A=∠C,再利用AAS即可证出△ADB≌△CBE,从而证出结论.【详解】证明:∵,∠DBC+∠DBA=180°∴∠DBA=∠BEC∵∴∠A=∠C在△ADB和△CBE中∴△ADB≌△CBE,∴AD=BC.【点睛】此题考查的是补角的性质、平行线的性质和全等三角形的判定及性质,掌握同角的补角相等、平行线的性质和全等三角形的判定及性质是解决此题的关键.21、2.【解析】试题分析:先将进行化简,再将x的值代入即可;试题解析:原式=﹣•(x﹣1)==,当x=﹣1时,原式=﹣2.22、(1)①,②;(2),-1【分析】(1)①先提取,再利用平方差公式即可求解;②先化简,再利用完全平方公式即可求解;(2)先根据整式的混合运算法则化简,再根据零指数幂的性质求出x,y的值,代入即可求解.【详解】(1)①==②(2)[]÷===∵无意义,且,∴,代入上式得:原式==-1.【点睛】此题主要考查因式分解与整式的运算,解题的关键是熟知其运算法则.23、(1)-6a3b+4a2b2+8ab3;(2)-2x2+11xy.【解析】试题分析:(1)根据单项式乘多项式法则计算即可;(2)先用单项式乘多项式法则计算,然后合并同类项即可.试题解析:解:(1)原式=-6a3b+4a2b2+8ab3;(2)原式=6x2-9xy-8x2+20xy=-2x2+11xy.24、(3)(﹣3,3);(3)作图见解析(3)(﹣3,3).【解析】试题分析:(3)关于y轴对称的点坐标是纵坐标相同,横坐标互为相反数,(3)分别将三个顶点A、O、B,向左方向平移三个单位,然后连线.(3)左平移三个单位的坐标变化规律是纵坐标不变,横坐标减3.试题解析:(3)因为B的坐标是(3,3),所以B关于y轴对称的点的坐标是(-3,3)(3)将A向左移三个格得到A3,O向左平移三个单位得到O3,B向左平移三个单位得到B3,再连线得到△A3O3B3.(3)因为A的坐标是(3,3),左平移三个单位的坐标变化规律是纵坐标不变,横坐标减3,所以A3是(-3,3).考点:3.关于y轴对称点坐标规律3.图形平移后点的坐标规律25、(1)这项工程的规定时间是30天;(2)甲乙两队合作完成该工程需要18天.【分析】(1)设这项工程的规定时间是天,则甲队单独施工需要天完工,乙队单独施工需要天完工,依题意列方程即可解答;(2)求出甲、乙两队单独施工需要的时间,再根据题意列方程即可.【详解】(1)设这项工程的规定时间是天,则甲队单独施工需要天完工,乙队单独施工需要天完工,依题意,得:.解得:,经检验,是原方程的解,且符合题意.答:这项工程的规定时间是30天.(2)由(1)可知:甲队单独施工需要30天完工,乙队单独施工需要45天完工,(天),答:甲乙两队合作完成该工程需要18天.【点睛】本题考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大米批量订购协议规范(2024年度)
- 齐鲁工业大学《Java高级程序设计》2023-2024学年期末试卷
- 垫资服务居间协议2024年
- 福建省福州三牧中学2024-2025 学年八年级上学期期中考试物理学科试卷(无答案)
- 员工心理健康与企业绩效关系探讨考核试卷
- 2024-2025年茶艺师、茶文化(品鉴及制作)等技能知识考试题库与答案
- 危机管理与企业战略的一致性探讨考核试卷
- 2024年福建省安全员A证主要负责人证考试题库
- 合成材料在机械设备制造中的应用考核试卷
- 汽车电动车电池火灾应对考核试卷
- 流程图、结构图(优秀) 儿童教育课件 精选
- 小学一年级期中考试家长会课件
- 政府安置房交房交付仪式活动方案
- 2022年全国高中数学联赛福建赛区预赛试卷参考答案
- 物业管理风险管控
- 电泳-厚-度-检-测-记录
- 服务采购询比价表
- 卫生院会议制度
- 小学 四年级 体育水平二 基本运动技能平衡篇 课件
- 巧克力简介课件
- 初中语文人教七年级上册要拿我当一挺机关枪使用
评论
0/150
提交评论