2025届江苏省南京市建邺区三校联合八年级数学第一学期期末复习检测模拟试题含解析_第1页
2025届江苏省南京市建邺区三校联合八年级数学第一学期期末复习检测模拟试题含解析_第2页
2025届江苏省南京市建邺区三校联合八年级数学第一学期期末复习检测模拟试题含解析_第3页
2025届江苏省南京市建邺区三校联合八年级数学第一学期期末复习检测模拟试题含解析_第4页
2025届江苏省南京市建邺区三校联合八年级数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省南京市建邺区三校联合八年级数学第一学期期末复习检测模拟试题复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.若计算的结果中不含关于字母的一次项,则的值为()A.4 B.5 C.6 D.72.甲,乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后,结果如下。某同学根据上表分析,得出如下结论。班级参加人数中位数方差平均数甲55149191135乙55151110135(1)甲,乙两班学生成绩的平均水平相同。(2)乙班优秀的人数多于甲班优秀的人数。(每分钟输入汉字≧150个为优秀。)(3)甲班成绩的波动情况比乙班成绩的波动小。上述结论中正确的是()A.(1)(2)(3) B.(1)(2) C.(1)(3) D.(2)(3)3.已知=,=,则的值为()A.3 B.4 C.6 D.94.如图,四边形OABC为长方形,点A在x轴上,点C在y轴上,B点坐标为(8,6),将沿OB翻折,A的对应点为E,OE交BC于点D,则D点的坐标为()A.(,6) B.(,6) C.(,6) D.(,6)5.图中的三角形被木板遮住了一部分,这个三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.以上都有可能6.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是()A.2018 B.2019 C.2020 D.20217.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?A.5 B.6 C.7 D.108.若的结果中不含项,则的值为()A.2 B.-4 C.0 D.49.如图,BC=EC,∠BCE=∠DCA,要使△ABC≌△DEC,不能添加下列选项中的()A.∠A=∠D B.AC=DCC.AB=DE D.∠B=∠E10.如图,△DEF为直角三角形,∠EDF=90°,△ABC的顶点B,C分别落在Rt△DEF两直角边DE和DF上,若∠ABD+∠ACD=55°,则∠A的度数是()A.30° B.35° C.40° D.55°二、填空题(每小题3分,共24分)11.如图,点在同一直线上,已知,要使,以“”需要补充的一个条件是________________(写出一个即可).12.在中,,,点在边上,连接,若为直角三角形,则的度数为_______________度.13.分解因式:=______.14.如图矩形中,对角线相交于点,若,cm,则的长为__________cm.15.计算:=_______.16.在平行四边形中,,,,那么的取值范围是______.17.如图,将直线OA向上平移3个单位长度,则平移后的直线的表达式为_____.18.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为__________.三、解答题(共66分)19.(10分)某服装店到厂家选购A、B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,已知用2000元购进A种服装的数量是用750元购进B种服装数量的2倍.(1)求A、B两种品牌服装每套进价分别为多少元?(2)若A品牌服装每套售价为130元,B品牌服装每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,要使总利润不少于1200元,则最少购进A品牌的服装多少套?20.(6分)如图:已知直线经过点,.(1)求直线的解析式;(2)若直线与直线相交于点,求点的坐标;(3)根据图象,直接写出关于的不等式的解集.21.(6分)在开展“学雷锋社会实践”活动中,某校为了解全校1000名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成如图的条形统计图:(1)这50个样本数据的中位数是次,众数是次;(2)求这50个样本数据的平均数;(3)根据样本数据,估算该校1000名学生大约有多少人参加了4次实践活动.22.(8分)如图,已知△ABC中,AH⊥BC于H,∠C=35°,且AB+BH=HC,求∠B的度数.23.(8分)如图,AC平分钝角∠BAE交过B点的直线于点C,BD平分∠ABC交AC于点D,且∠BAD+∠ABD=90°.(1)求证:AE∥BC;(2)点F是射线BC上一动点(点F不与点B,C重合),连接AF,与射线BD相交于点P.(ⅰ)如图1,若∠ABC=45°,AF⊥AB,试探究线段BF与CF之间满足的数量关系;(ⅱ)如图2,若AB=10,S△ABC=30,∠CAF=∠ABD,求线段BP的长.24.(8分)如图,某小区有一块长为(3a+b)米,宽为(a+3b)米的长方形空地,计划在中间边长(a+b)米的正方形空白处修建一座文化亭,左边空白部分是长为a米,宽为米的长方形小路,剩余阴影部分用来绿化.(1)请用含a、b的代数式表示绿化面积S(结果需化简);(2)当a=30,b=20时,求绿化面积S.25.(10分)列方程解应用题:一辆汽车开往距离出发地180km的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.求前一小时的行驶速度.26.(10分)在综合与实践课上,同学们以“一个含的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线且和直角三角形,,,.操作发现:(1)在如图1中,,求的度数;(2)如图2,创新小组的同学把直线向上平移,并把的位置改变,发现,说明理由;实践探究:(3)缜密小组在创新小组发现结论的基础上,将如图中的图形继续变化得到如图,平分,此时发现与又存在新的数量关系,请直接写出与的数量关系.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据题意,先将代数式通过多项式乘以多项式的方法展开,再将关于x的二次项、一次项及常数项分别合并,然后根据不含字母x的一次项的条件列出关于x的方程即可解得.【详解】∵计算的结果中不含关于字母的一次项∴∴故选:C【点睛】本题考查的知识点是多项式乘以多项式的方法,掌握多项式乘法法则,能根据不含一次项的条件列出方程是关键,在去括号时要特别注意符号的准确性.2、B【分析】平均水平的判断主要分析平均数;根据中位数不同可以判断优秀人数的多少;波动大小比较方差的大小.【详解】解:从表中可知,平均字数都是135,(1)正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,(2)正确;甲班的方差大于乙班的,又说明甲班的波动情况小,所以(3)错误.综上可知(1)(2)正确.故选:B.【点睛】本题考查了平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.3、D【分析】逆用同底数幂的除法法则以及幂的乘方法则进行计算,即可解答.【详解】∵=,=,

∴=(3a)2÷3b=36÷4=9,

故选D.【点睛】本题考查同底数幂的除法法则以及幂的乘方法则,解题的关键是掌握相关法则的逆用.4、D【分析】根据翻折的性质及勾股定理进行计算即可得解.【详解】∵四边形OABC为长方形,点A在x轴上,点C在y轴上,B点坐标为∴OC=AB=6,BC=OA=8,,,BC//OA∴∵将沿OB翻折,A的对应点为E∴∴∴OD=BD设CD=x,则在中,∴解得:∴点D的坐标为,故选:D.【点睛】本题主要考查了翻折的性质,熟练掌握翻折及勾股定理的计算是解决本题的关键.5、D【解析】从图中,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个直角,故选D.6、D【分析】根据勾股定理和正方形的面积公式,知“生长”1次后,以直角三角形两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,即所有正方形的面积和是2×1=2;“生长”2次后,所有的正方形的面积和是3×1=3,推而广之即可求出“生长”2020次后形成图形中所有正方形的面积之和.【详解】解:设直角三角形的是三条边分别是a,b,c.

根据勾股定理,得a2+b2=c2,

即正方形A的面积+正方形B的面积=正方形C的面积=1.正方形D的面积+正方形E的面积+正方形F的面积+正方形G的面积=正方形A的面积+正方形B的面积=正方形C的面积=1.

推而广之,即:每次“生长”的正方形面积和为1,“生长”了2020次后形成的图形中所有的正方形的面积和是2×1=2.

故选D.【点睛】此题考查了正方形的性质,以及勾股定理,其中能够根据勾股定理发现每一次得到的新的正方形的面积和与原正方形的面积之间的关系是解本题的关键.7、C【解析】依题意可得,当其中一个夹角为180°即四条木条构成三角形时,任意两螺丝的距离之和取到最大值,为夹角为180°的两条木条的长度之和.因为三角形两边之和大于第三边,若长度为2和6的两条木条的夹角调整成180°时,此时三边长为3,4,8,不符合;若长度为2和3的两条木条的夹角调整成180°时,此时三边长为4,5,6,符合,此时任意两螺丝的距离之和的最大值为6;若长度为3和4的两条木条的夹角调整成180°时,此时三边长为2,6,7,符合,此时任意两螺丝的距离之和的最大值为7;若长度为4和6的两条木条的夹角调整成180°时,此时三边长为2,3,10,不符合.综上可得,任意两螺丝的距离之和的最大值为7,故选C8、D【分析】由的结果中不含项,可知,结果中的项系数为0,进而即可求出答案.【详解】∵==,又∵的结果中不含项,∴1-k=0,解得:k=1.故选D.【点睛】本题主要考查多项式与多项式的乘法法则,利用法则求出结果,是解题的关键.9、C【分析】根据全等三角形的判定条件进行分析即可;【详解】根据已知条件可得,即,∵BC=EC,∴已知三角形一角和角的一边,根据全等条件可得:可根据AAS证明,A正确;可根据SAS证明,B正确;不能证明,C故错误;根据ASA证明,D正确;故选:C.【点睛】本题主要考查了全等三角形的判定条件,根据已知条件进行准确分析是解题的关键.10、B【分析】由∠EDF=90°,则∠DBC+∠DCB=90°,则得到∠ABC+∠ACB=145°,根据三角形内角和定理,即可得到∠A的度数.【详解】解:∵∠EDF=90°,∴∠DBC+∠DCB=90°,∵∠ABD+∠ACD=55°,∴∠ABC+∠ACB=90°+55°=145°,∴∠A=;故选:B.【点睛】本题考查了三角形的内角和定理,解题的关键是熟练掌握三角形的内角和定理进行解题.二、填空题(每小题3分,共24分)11、等【分析】需要补充的一个条件是BE=CF,若BF=CE,可用AAS证明△ABF≌△DCE;若补充条件AF=DE,也可用AAS证明△ABF≌△DCE.【详解】解:要使△ABF≌△DCE,又∵∠A=∠D,∠B=∠C,添加BF=CE或AF=DE,可用AAS证明△ABF≌△DCE;故填空答案:等.【点睛】本题考查了全等三角形的判定;题目是开放型题目,根据已知条件结合判定方法,找出所需条件,一般答案不唯一,只要符合要求即可.12、或【分析】当为直角三角形时,有两种情况或,依据三角形内角和定理,结合具体图形分类讨论求解即可.【详解】解:分两种情况:①如图1,当时,∵,∴;②如图2,当时,∵,,∴,∴,综上,则的度数为或;故答案为或;【点睛】本题主要考查了三角形内角和定理以及数学的分类讨论思想,能够正确进行分类是解题的关键.13、x(x+2)(x﹣2).【解析】试题分析:==x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).考点:提公因式法与公式法的综合运用;因式分解.14、2【解析】根据矩形对角线的性质可推出△ABO为等边三角形.已知AB=1,易求AC.解:已知∠AOB=60°,根据矩形的性质可得AO=BO,所以∠OAB=∠ABO=60度.因为AB=1,所以AO=BO=AB=1.故AC=2.本题考查的是矩形的性质以及等边三角形的有关知识.15、【分析】根据单项式乘以多项式的运算法则,把单项式分别和多项式的每一项相乘计算即可.【详解】,故答案为:.【点睛】本题考查了单项式乘以多项式,熟练掌握运算法则是解题的关键.16、2<a<8.【分析】根据平行四边形性质求出OD,OA,再根据三角形三边关系求出a的取值范围.【详解】因为平行四边形中,,,所以,所以6-4<AD<6+2,即2<a<8.故答案为:2<a<8.【点睛】考核知识点:平行四边形性质.理解平行四边形对角线互相平分是关键.17、y=2x+1【分析】设直线OA的解析式为:y=kx,代入(1,2)求出直线OA的解析式,再将直线OA向上平移1个单位长度,得到平移后的直线的表达式.【详解】设直线OA的解析式为:y=kx,把(1,2)代入,得k=2,则直线OA解析式是:y=2x.将其上平移1个单位长度,则平移后的直线的表达式为:y=2x+1.故答案是:y=2x+1.【点睛】本题考查了直线的平移问题,掌握直线的解析式以及直线平移的性质是解题的关键.18、(4,2)【解析】试题考查知识点:图形绕固定点旋转思路分析:利用网格做直角三角形AMB,让△AMB逆时针旋转90°,也就使AB逆时针旋转了90°,由轻易得知,图中的AB′就是旋转后的位置.点B′刚好在网格格点上,坐标值也就非常明显了.具体解答过程:如图所示.做AM∥x轴、BM∥y轴,且AM与BM交于M点,则△AMB为直角三角形,线段AB绕点A按逆时针方向旋转90°,可以视为将△AMB逆时针方向旋转90°()得到△ANB′后的结果.∴,AN⊥x轴,NB′⊥y轴,点B′刚好落在网格格点处∵线段AB上B点坐标为(1,3)∴点B′的横坐标值为:1+3=4;纵坐标值为:3-1=2即点B′的坐标为(4,2)试题点评:在图形旋转涉及到的计算中,还是离不开我们所熟悉的三角形.三、解答题(共66分)19、(1)A、B两种品牌服装的进价分别为100元和75元;(2)最少购进A品牌的服装16套【分析】(1)首先设A品牌服装每套进价为x元,则B品牌服装每套进价为(x-25)元,根据关键语句“用2000元购进A种服装数量是用750元购进B种服装数量的2倍.”列出方程,解方程即可;

(2)首先设购进A品牌的服装a套,则购进B品牌服装(2a+4)套,根据“可使总的获利超过1200元”可得不等式(130-100)a+(95-75)(2a+4)≥1200,再解不等式即可.【详解】(1)设B品牌服装每套进价为x元种,则A品牌服装每套进价为(x+25)元根据题意得:,

解得:x=75经检验:x=75是原方程的解,x+25=100,答:A、B两种品牌服装的进价分别为100元和75元;(2)设购买A种品牌服装a件,则购买B种品牌服装(2a+4)件,根据题意得:(130-100)a+(95-75)(2a+4)1200,解得:,∴a取最小值是16,答:最少购进A品牌的服装16套.【点睛】本题考查了分式方程的应用和一元一次不等式的应用,弄清题意,表示出A、B两种品牌服装每套进价,根据购进的服装的数量关系列出分式方程,求出进价是解决问题的关键.20、(1);(2)点C的坐标为;(3)【分析】(1)将A、B坐标代入解析式中计算解答即可;(2)将两直线方程联立求方程组的解即可;(3)根据图像找出y>0,且直线高于直线部分的x值即可.【详解】解:(1)因为直线经过点,所以将其代入解析式中有,解得,所以直线的解析式为;(2)因为直线与直线相交于点所以有,解得所以点C的坐标为;(3)根据图像可知两直线交点C的右侧直线高于直线且大于0,此时x的取值范围是大于3并且小于5,所以不等式的解集是.【点睛】本题考查的是一次函数综合问题,能够充分调动所学知识是解题的关键.21、(1)3,4;(2)这组样本数据的平均数是3.3次;(3)该校学生共参加4次活动约为360人.【分析】(1)根据众数的定义和中位数的定义,即可求出众数与中位数.

(2)根据加权平均数的公式可以计算出平均数;

(3)利用样本估计总体的方法,用1000×百分比即可.【详解】解:(1)∵在这组样本数据中,4出现了18次,出现的次数最多,∴这组数据的众数是4次.∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,=3次,∴这组数据的中位数是3次;故答案为:3,4.(2)观察条形统计图,可知这组样本数据的平均数:=3.3次,则这组样本数据的平均数是3.3次.(3)1000×=360(人)∴该校学生共参加4次活动约为360人.【点睛】本题考查的是条形统计图,平均数,众数,中位数,以及样本估计总体.读懂统计图,从统计图中得到必要的信息,掌握众数、中位数的定义是解题的关键.22、70°【解析】分析:在CH上截取DH=BH,通过作辅助线,得到△ABH≌△ADH,进而得到CD=AD,则可求解∠B的大小.详解:在CH上截取DH=BH,连接AD,如图∵BH=DH,AH⊥BC,∴△ABH≌△ADH,∴AD=AB∵AB+BH=HC,HD+CD=CH∴AD=CD∴∠C=∠DAC,又∵∠C=35°∴∠B=∠ADB=70°.点睛:掌握全等三角形及等腰三角形的性质,能够求解一些简单的角度问题.23、(1)见解析;(2)(ⅰ)BF=(2+)CF;理由见解析;(ⅱ)BP=.【分析】(1)先求出∠BAE+∠ABC=180°,再根据同旁内角互补两直线平行,即可证明AE∥BC.(2)(ⅰ)过点A作AH⊥BC于H,如图1所示,先证明△ABH、△BAF是等腰直角三角形,再根据等腰直角三角形的性质,求证BF=(2+)CF即可.(ⅱ)①当点F在点C的左侧时,作PG⊥AB于G,如图2所示,先通过三角形面积公式求出AF的长,再根据勾股定理求得BF、AC、BD的长,证明Rt△BPG≌Rt△BPF(HL),以此得到AD的长,设AP=x,则PG=PF=6﹣x,利用勾股定理求出AP的长,再利用勾股定理求出PD的长,通过BP=BD﹣PD即可求出线段BP的长.②当点F在点C的右侧时,则∠CAF=∠ACF',P’和F’分别对应图2中的P和F,如图3所示,根据等腰三角形的性质求得PD=P'D=,再根据①中的结论,可得BP=BP'+P'P=.【详解】(1)∵AC平分钝角∠BAE,BD平分∠ABC,∴∠BAE=2∠BAD,∠ABC=2∠ABD,∴∠BAE+∠ABC=2(∠BAD+∠ABD)=2×90°=180°,∴AE∥BC;(2)解:(ⅰ)BF=(2+)CF;理由如下:∵∠BAD+∠ABD=90°,∴BD⊥AC,∴∠CBD+∠BCD=90°,∵∠ABD=∠CBD,∴∠BAD=∠BCD,∴AB=BC,过点A作AH⊥BC于H,如图1所示:∵∠ABC=45°,AF⊥AB,∴△ABH、△BAF是等腰直角三角形,∴AH=BH=HF,BC=AB=BH,BF=AB=×BH=2BH,∴CF=BF﹣BC=2BH﹣BH=(2﹣)BH,∴BH==(1+)CF,∴BF=2(1+)CF=(2+)CF;(ⅱ)①当点F在点C的左侧时,如图2所示:同(ⅰ)得:∠BAD=∠BCD,∴AB=BC=10,∵∠CAF=∠ABD,∠BAD+∠ABD=90°,∴∠BCD+∠CAF=90°,∴∠AFC=90°,∴AF⊥BC,则S△ABC=BC•AF=×10×AF=30,∴AF=6,∴BF==8,∴CF=BC﹣BF=10﹣8=2,∴AC==2,∵S△ABC=AC•BD=×2×BD=30,∴BD=3,作PG⊥AB于G,则PG=PF,在Rt△BPG和Rt△BPF中,,∴Rt△BPG≌Rt△BPF(HL),∴BG=BF=8,∴AG=AB﹣BG=2,∵AB=CB,BD⊥AC,∴AD=CD=AC=,设AP=x,则PG=PF=6﹣x,在Rt△APG中,由勾股定理得:22+(6﹣x)2=x2,解得:x=,∴AP=,∴PD=,∴BP=BD﹣PD=;②当点F在点C的右侧时,P’和F’分别对应图2中的P和F,如图3所示,则∠CAF=∠CAF',∵BD⊥AC,∴∴∠APD=∠AP'D,∴△是等腰三角形∴AP=AP',PD=P'D=,∴BP=BP'+P'P=;综上所述,线段BP的长为或.【点睛】本题考查了三角形的综合问题,掌握同旁内角互补两直线平行、等腰直角三角形的性质以及判定、勾股定理、全等三角形的性质以及判定是解题的关键.24、(1)(平方米);(2)(平方米)【分析】(1)绿化面积=矩形面积-正方形面积-小矩

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论