2025届福建省三明市建宁县数学八上期末监测试题含解析_第1页
2025届福建省三明市建宁县数学八上期末监测试题含解析_第2页
2025届福建省三明市建宁县数学八上期末监测试题含解析_第3页
2025届福建省三明市建宁县数学八上期末监测试题含解析_第4页
2025届福建省三明市建宁县数学八上期末监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届福建省三明市建宁县数学八上期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(﹣2,2)黑棋(乙)的坐标为(﹣1,﹣2),则白棋(甲)的坐标是()A.(2,2) B.(0,1) C.(2,﹣1) D.(2,1)2.有下面的说法:①全等三角形的形状相同;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等.其中正确的说法有()A.1个 B.2个 C.3个 D.4个3.已知一个多边形的内角和等于900º,则这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形4.计算:()A.1 B. C.4 D.5.一个多边形的内角和是外角和的2倍,则它是()A.六边形 B.七边形 C.八边形 D.九边形6.已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA7.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是()A. B. C. D.8.如图,在Rt△ABC中,∠ACB=90°,BC=5cm,在AC上取一点E使EC=BC,过点E作EF⊥AC,连接CF,使CF=AB,若EF=12cm,则AE的长为()A.5cm B.6cm C.7cm D.8cm9.若,的值均扩大为原来的3倍,则下列分式的值保持不变的是()A. B. C. D.10.如图,△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N作直线MN,交BC于点D,连结AD,则∠BAD的度数为()A.65° B.60°C.55° D.45°11.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或1712.已知a、b、c是三角形的三边长,若满足,则这个三角形的形状是()A.等腰三角形 B.等边三角形 C.锐角三角形 D.直角三角形二、填空题(每题4分,共24分)13.对于两个非0实数x,y,定义一种新的运算:,若,则值是______14.分解因式:_________________.15.估算≈_____.(精确到0.1)16.若直角三角形斜边上的高和中线长分别是,,则它的面积是__________.17.已知等腰三角形两边长为5、11,则此等腰三角形周长是_________________________.18.甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为米,乙行驶的时间为秒,与之间的关系如图所示,则甲的速度为每秒___________米.三、解答题(共78分)19.(8分)定义:如果一个数的平方等于,记为,那么这个数叫做虚数单位,和我们所学的实数对应起来的数就叫做复数,表示为(为实数),叫做这个复数的实部,叫做这个复数的虚部,复数的加、减、乘法运算与整式的加、减、乘法运算类似.例如,计算:(1)填空:_______,_______;(2)计算:20.(8分)如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=100°,∠D=30°,求∠AEM的度数.21.(8分)课堂上,老师出了一道题:比较与的大小.小明的解法如下:解:,因为,所以,所以,所以,所以,我们把这种比较大小的方法称为作差法.(1)根据上述材料填空(在横线上填“”“=”或“”):若,则;若,则;若,则.(2)利用上述方法比较实数与的大小.22.(10分)如图,在中,.求的度数.23.(10分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求证:CF⊥DE于点F.24.(10分)如图,点、、、在同一直线上,已知,,.求证:.25.(12分)如图,一次函数的图像与轴交于点,与轴交于点,且与正比函数的图像交于点,结合图回答下列问题:(1)求的值和一次函数的表达式.(2)求的面积;(3)当为何值时,?请直接写出答案.26.如图1,某容器外形可看作由三个长方体组成,其中的底面积分别为的容积是容器容积的(容器各面的厚度忽略不计).现以速度(单位:)均匀地向容器注水,直至注满为止.图2是注水全过程中容器的水面高度(单位:)与注水时间(单位:)的函数图象.在注水过程中,注满所用时间为______________,再注满又用了______________;注满整个容器所需时间为_____________;容器的总高度为____________.

参考答案一、选择题(每题4分,共48分)1、D【分析】先利用已知两点的坐标画出直角坐标系,然后可写出白棋(甲)的坐标.【详解】根据题意可建立如图所示平面直角坐标系:由坐标系知白棋(甲)的坐标是(2,1),故选D.【点睛】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.2、D【分析】先分别验证①②③④的正确性,并数出正确的个数,即可得到答案.【详解】①全等三角形的形状相同,根据图形全等的定义,正确;②全等三角形的对应边相等,根据全等三角形的性质,正确;③全等三角形的对应角相等,根据全等三角形的性质,正确;④全等三角形的周长、面积分别相等,正确;故四个命题都正确,故D为答案.【点睛】本题主要考查了全等的定义、全等三角形图形的性质,即全等三角形对应边相等、对应角相等、面积周长均相等.3、C【解析】试题分析:多边形的内角和公式为(n-2)×180°,根据题意可得:(n-2)×180°=900°,解得:n=1.考点:多边形的内角和定理.4、A【分析】根据零指数幂的运算法则计算即可.【详解】故选:A.【点睛】本题主要考查零指数幂,掌握零指数幂的运算法则是解题的关键.5、A【分析】先根据多边形的内角和定理及外角和定理,列出方程,再解方程,即可得答案.【详解】解:设多边形是边形.由题意得:解得∴这个多边形是六边形.故选:A.【点睛】本题考查内角和定理及外角和定理的计算,方程思想是解题关键.6、B【解析】试题分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A不符合题意;B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C不符合题意;D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D不符合题意.故选B.考点:全等三角形的判定.7、D【解析】试题分析:根据平行线的性质,可得∠3=∠1,根据两直线垂直,可得所成的角是∠3+∠2=90°,根据角的和差,可得∠2=90°-∠3=90°-60°=30°.故选D.考点:平行线的性质8、C【分析】根据已知条件证明Rt△ABC≌Rt△FCE,即可求出答案.【详解】∵EF⊥AC,∴∠CEF=90°,在Rt△ABC和Rt△FCE中,∴Rt△ABC≌Rt△FCE(HL),∴AC=FE=12cm,∵EC=BC=5cm,∴AE=AC-EC=12-5=7cm,故选:C.【点睛】本题考查了全等三角形的判定和性质,掌握知识点是解题关键.9、D【分析】分别写出、都扩大3倍后的分式,再化简与原式比较,即可选择.【详解】当、都扩大3倍时,A、,故A错误.B、,故B错误.C、,故C错误.D、,故D正确.故选D.【点睛】本题考查分式的基本性质,解题关键是熟练化简分式.10、A【分析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【详解】由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故选A.【点睛】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.11、A【解析】试题分析:当3为腰时,则3+3=6<7,不能构成三角形,则等腰三角形的腰长为7,底为3,则周长为:7+7+3=17.考点:等腰三角形的性质12、D【分析】首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,在根据勾股定理的逆定理判断其形状是直角三角形.【详解】∵(a-6)2≥0,≥0,|c-10|≥0,∴a-6=0,b-8=0,c-10=0,解得:a=6,b=8,c=10,∵62+82=36+64=100=102,∴是直角三角形.故选D.【点睛】本题主要考查了非负数的性质与勾股定理的逆定理,此类题目在考试中经常出现,是考试的重点.二、填空题(每题4分,共24分)13、-1【分析】根据新定义的运算法则即可求出答案.【详解】解:∵1∗(−1)=2,∴,即a−b=2,∴.故答案为−1.【点睛】本题考查代数式运算,解题的关键是熟练运用整体的思想.14、【分析】提出负号后,再运用完全平方公式进行因式分解即可.【详解】.故答案为:.【点睛】此题主要考查了运用完全平方公式进行因式分解,熟练掌握完全平方公式的结构特征是解题的关键.15、1.2【分析】由于2<3<16,可得到的整数部分是1,然后即可判断出所求的无理数的大约值.【详解】∵2<3<16,∴1<<4,∴的整数部分是1,∵1.162=2.2856,1.172=3.0482,∴≈1.2,故答案是:1.2【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.16、48【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出斜边的长,然后根据三角形的面积公式计算即可.【详解】解:∵直角三角形斜边上的中线长是∴该直角三角形的斜边长为8×2=16cm∵直角三角形斜边上的高是6cm∴该直角三角形的面积为:×16×6=48cm2故答案为:48【点睛】此题考查的是直角三角形的性质和求三角形的面积,掌握直角三角形斜边上的中线等于斜边的一半和三角形的面积公式是解决此题的关键.17、1【分析】根据等腰三角形腰的情况分类讨论,然后根据三角形的三边关系进行取舍,即可求出等腰三角形周长.【详解】解:若等腰三角形的腰长为5时∵5+5<11∴5、5、11构不成三角形,舍去;若等腰三角形的腰长为11时∵5+11>11∴5、11、11能构成三角形此时等腰三角形周长是5+11+11=1故答案为:1.【点睛】此题考查的是已知等腰三角形的两边求周长,掌握三角形的三边关系、等腰三角形的定义、分类讨论的数学思想是解决此题的关键.18、6【解析】由函数图像在B点处可知50秒时甲追上乙,C点为甲到达目的地,D点为乙达到目的地,故可设甲的速度为x,乙的速度为y,根据题意列出方程组即可求解.【详解】依题意,设甲的速度为x米每秒,乙的速度为y米每秒,由函数图像可列方程解得x=6,y=4,∴甲的速度为每秒6米故填6.【点睛】此题主要考查函数图像的应用,解题的关键是根据函数图像得到实际的含义,再列式求解.三、解答题(共78分)19、(1),1;(2)【分析】(1)由已知定义可得:,所求式子可化为:,,代入运算即可得答案;(2)将原式用完全平方公式展开,然后代入即可得到答案.【详解】(1);.故答案为:;1.(2).【点睛】本题主要考查了新概念类的运算问题,熟练掌握整式的运算公式将原式变形再代入新概念进行运算是解题的关键.20、(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)∠AEM=130°【解析】分析:(1)根据同位角相等两直线平行,可证CE∥GF;(2)根据平行线的性质可得∠C=∠FGD,根据等量关系可得∠FGD=∠EFG,根据内错角相等,两直线平行可得AB∥CD,再根据平行线的性质可得∠AED与∠D之间的数量关系;(3)根据对顶角相等可求∠DHG,根据三角形外角的性质可求∠CGF,根据平行线的性质可得∠C,∠AEC,再根据平角的定义可求∠AEM的度数.本题解析:(1)证明:∵∠CED=∠GHD,∴CE∥GF(2)答:∠AED+∠D=180°理由:∵CE∥GF,∴∠C=∠FGD,∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)∵∠DHG=∠EHF=100°,∠D=30°,∴∠CGF=100°+30°=130°∵CE∥GF,∴∠C=180°﹣130°=50°∵AB∥CD,∴∠AEC=50°,∴∠AEM=180°﹣50°=130°.点睛:本题考查了平行线的判定与性质,解题关键是根据已知条件判断相关的内错角,同位角的相等关系.21、(1);=;;(2).【解析】(1)根据不等式和方程移项可得结论;(2)同理,利用作差法可比较大小.【详解】(1)(1)①若a-b>0,则a>b;②若a-b=0,则a=b;③若a-b<0,则a<b;(2).因为,所以,即.【点睛】本题考查了实数大小的比较,根据所给的材料,运用类比的方法解决问题.22、37.5°【分析】利用等边对等角的性质结合三角形内角和定理可求出,再根据外角的性质可得的度数.【详解】证明:∵,,∴.又∵,∴.而,∴.【点睛】本题主要考查了等腰三角形的性质,还涉及了三角形内角和定理及三角形外角的性质,灵活利用等腰三角形等边对等角的性质是解题的关键.23、证明见解析.【分析】根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【详解】∵AD∥BE,∴∠A=∠B.在△ACD和△BEC中∵,∴△ACD≌△BEC(SAS),∴DC=CE.∵CF平分∠DCE,∴CF⊥DE(三线合一).【点睛】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力.24、详见解析【分析】首先判定,然后利用SSS判定,即可得解.【详解】∵∴,即在与中,∵,,∴∴【点睛】此题主要考查全等三角形的判定与性质,熟练掌握即可解题.25、(1);(2);(3).【分析】(1)易求出点A的坐标,即可用待定系数法求解;

(2)由解析式求得C的坐标,即可求出△BOC的面积;

(3)根据图象即可得到结论.【详解】(1)∵一次函数y1=kx+b的图象与正比例函数的图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论