版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省怀化市洪江市数学八上期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个 B.3个 C.2个 D.1个2.下列各组线段,能构成三角形的是()A. B.C. D.3.一个多边形的内角和是外角和的2倍,则这个多边形对角线的条数是()A.6 B.9 C.12 D.184.下列各式可以用完全平方公式分解因式的是()A. B. C. D.5.我国的纸伞工艺十分巧妙,如图,伞圈D能沿着伞柄滑动,伞不论张开还是缩拢,伞柄AP始终平分同一平面内所成的角∠BAC,为了证明这个结论,我们的依据是A.SAS B.SSS C.AAS D.ASA6.如图是5×5的正方形网络,以点D,E为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以画出()A.2个 B.4个 C.6个 D.8个7.如图,在△ABC中,∠ACB=90°,AB的中垂线交AC于D,P是BD的中点,若BC=4,AC=8,则S△PBC为()A.3 B.3.3 C.4 D.4.58.计算()A.7 B.-5 C.5 D.-79.如图所示,在直角三角形ACB中,已知∠ACB=90°,点E是AB的中点,且,DE交AC的延长线于点D、交BC于点F,若∠D=30°,EF=2,则DF的长是()A.5 B.4 C.3 D.210.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=7,AC=6,则△ACE的周长为()A.8 B.11 C.13 D.15二、填空题(每小题3分,共24分)11.命题“在中,如果,那么是等边三角形”的逆命题是_____.12.计算5个数据的方差时,得s2=[(5﹣)2+(8﹣)2+(7﹣)2+(4﹣)2+(6﹣)2],则的值为_____.13.如图,中,,的平分线与边的垂直平分线相交于,交的延长线于,于,现有下列结论:①;②;③平分;④.其中正确的有________.(填写序号)14.已知长为、宽为的长方形的周长为16,面积为15,则__________.15.不等式组的解集为__________16.已知,函数和的图象相交于点,则根据图象可得关于的方程组的解是_______.17.我县属一小为了师生继承瑶族非物质文化遗产的长鼓舞,决定购买一批相关的长鼓.据了解,中长鼓的单价比小长鼓的单价多20元,用10000元购买中长鼓与用8000元购买小长鼓的数量相同,则中长鼓为_______元,小长鼓的单价为_______元.18.分解因式:.三、解答题(共66分)19.(10分)垫球是排球队常规训练的重要项目之一,下列图表中的数据是运动员甲、乙、丙三人每人10次垫球测试的成绩,测试规则为每次连续接球10个,每垫球到位1个记1分,已知运动员甲测试成绩的中位数和众数都是1.运动员甲测试成绩统计表测试序号12345618910成绩(分)16816868(1)填空:______;______.(2)要从他们三人中选择一位垫球较为稳定的接球能手,你认为选谁更合适?为什么?20.(6分)(1)已知△ABC的三边长分别为,求△ABC的周长;(2)计算:.21.(6分)在如图所示的平面直角坐标系中,每个小方格都是边长为1的正方形,的顶点均在格点上,点的坐标是.(1)将沿轴正方向平移3个单位得到,画出,并写出点坐标;(2)画出关于轴对称的,并写出点的坐标.22.(8分)有两棵树,一棵高9米,另一棵高4米,两树相距12米.一只小鸟从一棵树的树梢(最高点)飞到另一棵树的树梢(最高点),问小鸟至少飞行多少米?23.(8分)如图,等边△ABC的边长为12cm,点P、Q分别是边BC、CA上的动点,点P、Q分别从顶点B、C同时出发,且它们的速度都为3cm/s.(1)如图1,连接PQ,求经过多少秒后,△PCQ是直角三角形;(2)如图2,连接AP、BQ交于点M,在点P、Q运动的过程中,∠AMQ的大小是否变化?若变化,请说明理由;若不变,请求出它的度数.24.(8分)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D是否是直角,并说明理由.(2)求四边形ABCD的面积.25.(10分)已知:如图,∠C=∠D=90°,AD,BC交于点O.(1)请添加一个合适的条件,证明:AC=BD;(2)在(1)的前提下请用无刻度直尺作出△OAB的角平分线OM.(不写作法,保留作图痕迹)26.(10分)如图,在中,∠.(1)尺规作图:作的平分线交于点;(不写作法,保留作图痕迹)(2)已知,求的度数.
参考答案一、选择题(每小题3分,共30分)1、B【分析】先由∠1=∠2得到∠CAB=∠DAE,然后分别利用“SAS”、“ASA”和“AAS”对各添加的条件进行判断.【详解】解:∵∠1=∠2,
∴∠CAB=∠DAE,
∵AC=AD,
∴当AB=AE时,可根据“SAS”判断△ABC≌△AED;
当BC=ED时,不能判断△ABC≌△AED;
当∠C=∠D时,可根据“ASA”判断△ABC≌△AED;
当∠B=∠E时,可根据“AAS”判断△ABC≌△AED.
故选:B.【点睛】本题考查了全等三角形的判定:三条边分别对应相等的两个三角形全等;两边及其夹角分别对应相等的两个三角形全等;两角及其夹边分别对应相等的两个三角形全等;两角及其中一个角的对边对应相等的两个三角形全等.2、C【分析】判断三条线段能否构成三角形,只需让两个较短的线段长度相加,其和若大于最长线段长度,则可以构成三角形,否则不能构成三角形.逐一判断即可.【详解】A选项,1+3<5,不能构成三角形;B选项,2+4=6,不能构成三角形;C选项,1+4>4,可以构成三角形;D选项,8+8<20,不能构成三角形,故选C.【点睛】本题考查了构成三角形的条件,掌握构成三角形的判断方法是解题的关键.3、B【分析】根据多边形的内角和是360°即可求得多边形的内角和,然后根据多边形的内角和求得边数,进而求得对角线的条数.【详解】设这个多边形有条边,由题意,得解得∴这个多边形的对角线的条数是故选:B.【点睛】此题比较简单,只要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.4、D【分析】可以用完全平方公式分解因式的多项式必须是完全平方式,符合结构,对各选项分析判断后利用排除法求解.【详解】解:A、两平方项符号相反,不能用完全平方公式,故本选项错误;B、缺少乘积项,不能用完全平方公式,故本选项错误;C、乘积项不是这两数积的两倍,不能用完全平方公式,故本选项错误;D、,故本选项正确;故选:D.【点睛】本题考查了用完全公式进行因式分解的能力,解题的关键了解完全平方式的结构特点,准确记忆公式,会根据公式的结构判定多项式是否是完全平方式.5、B【分析】根据确定三角形全等的条件进行判定即可得解.【详解】解:根据伞的结构,AE=AF,伞骨DE=DF,AD是公共边,
∵在△ADE和△ADF中,∴△ADE≌△ADF(SSS),
∴∠DAE=∠DAF,
即AP平分∠BAC.
故选B.【点睛】本题考查了全等三角形的应用,理解题意确定出全等的三角形以及全等的条件是解题的关键.6、B【解析】试题分析:观察图形可知:DE与AC是对应边,B点的对应点在DE上方两个,在DE下方两个共有4个满足要求的点,也就有四个全等三角形.根据题意,运用SSS可得与△ABC全等的三角形有4个,线段DE的上方有两个点,下方也有两个点.故选B.考点:本题考查三角形全等的判定方法点评:解答本题的关键是按照顺序分析,要做到不重不漏.7、A【分析】根据线段垂直平分线的性质得到DA=DB,根据勾股定理求出BD,得到CD的长,根据三角形的面积公式计算,得到答案.【详解】解:∵点D在线段AB的垂直平分线上,∴DA=DB,在Rt△BCD中,BC2+CD2=BD2,即42+(8﹣BD)2=BD2,解得,BD=5,∴CD=8﹣5=3,∴△BCD的面积=×CD×BC=×3×4=6,∵P是BD的中点,∴S△PBC=S△BCD=3,故选:A.【点睛】本题考查的是线段垂直平分线的性质、直角三角形的性质、勾股定理,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.8、C【分析】利用最简二次根式的运算即可得.【详解】故答案为C【点睛】本题考查二次根式的运算,掌握同类二次根式的运算法则及分母有理化是解题的关键.9、B【分析】求出∠B=30°,结合EF=2,得到BF,连接AF,根据垂直平分线的性质得到FA=FB=4,再证明∠DAF=∠D,得到DF=AF=4即可.【详解】解:∵DE⊥AB,则在△AED中,∵∠D=30°,∴∠DAE=60°,在Rt△ABC中,∵∠ACB=90°,∠BAC=60°,∴∠B=30°,在Rt△BEF中,∵∠B=30°,EF=2,∴BF=4,连接AF,∵DE是AB的垂直平分线,∴FA=FB=4,∠FAB=∠B=30°,∵∠BAC=60°,∴∠DAF=30°,∵∠D=30°,∴∠DAF=∠D,∴DF=AF=4,故选B.【点睛】本题考查了垂直平分线的判定和性质,直角三角形的性质,解题的关键是掌握相应定理,构造线段AF.10、C【分析】根据线段垂直平分线的性质得AE=BE,然后利用等线段代换即可得到△ACE的周长=AC+BC,再把BC=7,AC=6代入计算即可.【详解】∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=6+7=1.故选:C.【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.二、填空题(每小题3分,共24分)11、如果是等边三角形,那么.【解析】把原命题的题设与结论进行交换即可.【详解】“在中,如果,那么是等边三角形”的逆命题是“如果是等边三角形,那么”.故答案为:如果是等边三角形,那么.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.12、1【分析】根据平均数的定义计算即可.【详解】解:故答案为1.【点睛】本题主要考查平均数的求法,掌握平均数的公式是解题的关键.13、①②④【分析】①由角平分线的性质可知①正确;②由题意可知∠EAD=∠FAD=30°,故此可知ED=AD,DF=AD,从而可证明②正确;③若DM平分∠EDF,则∠EDM=90°,从而得到∠ABC为直角三角形,条件不足,不能确定,故③错误;④连接BD、DC,然后证明△EBD≌△DFC,从而得到BE=FC,从而可证明④.【详解】如图所示:连接BD、DC.①∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴ED=DF.故①正确.②∵∠EAC=60°,AD平分∠BAC,∴∠EAD=∠FAD=30°.∵DE⊥AB,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=AD.同理:DF=AD.∴DE+DF=AD.故②正确.③由题意可知:∠EDA=∠ADF=60°.假设MD平分∠ADF,则∠ADM=30°.则∠EDM=90°,又∵∠E=∠BMD=90°,∴∠EBM=90°.∴∠ABC=90°.∵∠ABC是否等于90°不知道,∴不能判定MD平分∠EDF.故③错误.④∵DM是BC的垂直平分线,∴DB=DC.在Rt△BED和Rt△CFD中,∴Rt△BED≌Rt△CFD.∴BE=FC.∴AB+AC=AE-BE+AF+FC又∵AE=AF,BE=FC,∴AB+AC=2AE.故④正确.故答案为①②④【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.14、1【分析】根据长方形的周长公式和面积公式可得2(a+b)=16,ab=15,从而求出a+b=8,然后将多项式因式分解,最后代入求值即可.【详解】解:∵长为、宽为的长方形的周长为16,面积为15∴2(a+b)=16,ab=15∴a+b=8∴故答案为:1.【点睛】此题考查的是长方形的周长公式、面积公式和因式分解,掌握长方形的周长公式、面积公式和用提公因式法因式分解是解决此题的关键.15、【分析】由题意分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解,确定不等式组的解集即可.【详解】解:,解得,所以不等式组的解集为:.故答案为:.【点睛】本题考查解一元一次不等式组,正确求出每一个不等式解集是基础以及熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16、【分析】先把P(m,-1)代入y=2x中解出m的值,再根据点P的坐标是方程组的解作答即可.【详解】解:将点P(m,-1)代入,得2m=-1,解得m=,∴的解即为的解,即为.故答案为:.【点睛】本题考查了一次函数与二元一次方程组,从函数的角度看,就是寻求两个一次函数的交点,属于基础题.17、100;1【分析】设小长鼓的单价为x元,则中长鼓的单价为(x+20)元,根据“用10000元购买中长鼓与用8000元购买小长鼓的数量相同”列出分式方程,并解方程即可得出结论.【详解】解:设小长鼓的单价为x元,则中长鼓的单价为(x+20)元根据题意可得解得:x=1经检验:x=1是原方程的解中长鼓的单价为1+20=100元故答案为:100;1.【点睛】此题考查的是分式方程的应用,掌握实际问题中的等量关系是解决此题的关键.18、.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式后继续应用平方差公式分解即可:.考点:提公因式法和应用公式法因式分解.三、解答题(共66分)19、(1)1,1;(2)选乙运动员更合适,理由见解析.【分析】(1)观察表格,根据众数的定义即可求解;(2)先分别求出三人的方差,再根据方差的意义求解即可.【详解】解:(1)∵运动员甲测试成绩的众数是1,∴数据1出现的次数最多,∵甲测试成绩中6分与8分均出现了3次,而一共测试10次,∴甲测试成绩中1分出现的次数为4次,而1分已经出现2次,∴.故答案为:1,1;(2)甲成绩重新排列为:6、6、6、1、1、1、1、8、8、8,∴,,,,,,∵,,∴选乙运动员更合适.【点睛】本题考查方差、条形图、折线图、中位数、众数、平均数等知识,熟练掌握基本概念以及运用公式求出平均数和方差是解题的关键.20、(1);(2).【分析】(1)根据三角形ABC的周长=a+b+c,利用二次根式加减法法则计算即可得答案;(2)根据0指数幂和负整数指数幂的运算法则计算即可得答案.【详解】(1)的周长=a+b+c=.原式.【点睛】本题考查二次根式的加减及0指数幂、负整数指数幂的运算,熟练掌握运算法则是解题关键.21、作图见解析,(1);(2).【分析】(1)根据图象平移的规律,只需要把、、三点坐标向上平移即可,把平移后的三个点坐标连接起来可得所求图形;(2)由图象的轴对称性可知,把三点坐标关于的对称点做出来,把三点连接后得到的图形即为所求图形.【详解】(1)沿轴正方向平移3个单位得到,如图所示:由图可知坐标为,故答案为:.(2)关于轴对称的,如图所示:由图可知点的坐标为故答案为:.【点睛】做平移图形和轴对称图形时,注意只需要把图形上的顶点进行平移,对称即可,把做出的点连接起来就可以得到所求图形.22、小鸟至少飞行13米.【分析】先画出图形,再根据矩形的判定与性质、勾股定理可求出AC的长,然后根据两点之间线段最短可得最短飞行距离等于AC的长,由此即可得.【详解】画出图形如下所示:由题意得:米,米,米,过点A作于点E,则四边形ABDE是矩形,米,米,米,在中,(米),由两点之间线段最短得:小鸟飞行的最短距离等于AC的长,即为13米,答:小鸟至少飞行13米.【点睛】本题考查了矩形的判定与性质、勾股定理、两点之间线段最短等知识点,依据题意,正确画出图形是解题关键.23、(1)经过43秒或83秒,△PCQ是直角三角形(2)∠【解析】(1)分两种情形分别求解即可解决问题;(2)由△AB≌△BCQ(SAS),推出∠BAP=∠CBQ,可得∠AMQ=∠PAB+∠ABQ=∠CBQ+∠ABQ=∠ABC=60°即可.【详解】(1)设经过t秒后,△PCQ是直角三角形.由题意:PC=(12﹣3t)cm,CQ=3t,∵△ABC是等边三角形,∴∠C=60°,当∠PQC=90°时,∠QPC=30°,∴PC=2CQ,∴12﹣3t=6t,解得t=43当∠QPC=90°时,∠PQC=30°,∴CQ=2PC,∴3t=2(12﹣3t),解得t=83∴经过43秒或83秒,△(2)结论:∠AMQ的大小不变.∵△ABC是等边三角形,∴AB=BC,∠ABC=∠C=60°,∵点P,Q的速度相等,∴BP=CQ,在△ABP和△BCQ中,AB=BC∠ABP=∠C∴△AB≌△BCQ(SAS),∴∠BAP=∠CBQ,∴∠AMQ=∠PAB+∠ABQ=∠CBQ+∠ABQ=∠ABC=60°.【点睛】本题考查等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.24、(1)∠D是直角.理由见解析;(2)2.【分析】(1)连接AC,先根据勾
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 传染病医院工作总结
- 产品经理试用期工作总结
- 中华经典诵读读后感
- 中学生代表毕业典礼演讲稿
- 报关实务-教学课件 第一章 海关概念
- 弥补企业以前年度亏损有哪些渠道
- 影像工作室创新创业计划书
- 英语科组尝试教学阶段性总结
- OECD -二十国集团 经合组织公司治理原则2023
- 教学技术课件教学课件
- 2024-2030年瓷砖行业市场现状供需分析及投资评估规划分析研究报告
- 2024年度一级注册消防工程师考试复习题库及答案(共1000题)
- 宾馆改造工程冬季施工方案
- 2024年餐厅服务员(高级)职业鉴定理论考试题库(含答案)
- GB/T 16915.2-2024家用和类似用途固定式电气装置的开关第2-1部分:电子控制装置的特殊要求
- 第六单元(单元测试)-2024-2025学年统编版语文六年级上册
- 2024年贵州铜仁市公开引进千名英才(事业单位77名)历年高频难、易错点500题模拟试题附带答案详解
- 人教八年级上册英语第六单元《Section A (1a-2d)》教学课件
- 室外球墨铸铁管施工方案
- 通用技术学考300题
- 公寓购房合同范文
评论
0/150
提交评论