北京四中学2025届数学八上期末学业质量监测模拟试题含解析_第1页
北京四中学2025届数学八上期末学业质量监测模拟试题含解析_第2页
北京四中学2025届数学八上期末学业质量监测模拟试题含解析_第3页
北京四中学2025届数学八上期末学业质量监测模拟试题含解析_第4页
北京四中学2025届数学八上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京四中学2025届数学八上期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,AB//EF//DC,∠ABC=90°,AB=DC,则图中的全等三角形有A.1对 B.2对 C.3对 D.4对2.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是()A.30° B.45° C.60° D.90°3.满足下列条件的中,不是直角三角形的是A. B.C. D.4.如图所示,在直角三角形ACB中,已知∠ACB=90°,点E是AB的中点,且,DE交AC的延长线于点D、交BC于点F,若∠D=30°,EF=2,则DF的长是()A.5 B.4 C.3 D.25.已知是三角形的三边长,如果满足,则三角形的形状是()A.等腰三角形 B.等边三角形 C.直角三角形 D.钝角三角形6.下列二次根式中属于最简二次根式的是()A. B. C. D.7.已知,则的值是()A.48 B.16 C.12 D.88.估计+1的值应在()A.3和4之间 B.4和5之间 C.5和6之间 D.6和7之间9.分式有意义,则的取值范围是()A. B. C. D.10.已知等腰三角形的周长为17cm,一边长为5cm,则它的腰长为()A.5cm B.6cm C.5.5cm或5cm D.5cm或6cm11.一次函数的图象与轴的交点坐标是()A.(-2,0) B.(,0) C.(0,2) D.(0,1)12.某种细胞的直径是0.00000095米,将0.00000095用科学计数法表示为()A. B. C. D.二、填空题(每题4分,共24分)13.若分式有意义,那么的取值范围是.14.若分式的值为0,则x的值等于________.15.已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形;②是直角三角形;③是钝角三角形;④是等边三角形.其中正确说法的是__________.(把你认为正确结论的序号都填上)16.比较大小:__________17.为中边上的中线,若,,则的取值范围是______.18.如图,点O为等腰三角形ABC底边BC的中点,,,腰AC的垂直平分线EF分别交AB、AC于E、F点,若点P为线段EF上一动点,则△OPC周长的最小值为_________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中:(1)请画出关于y轴对称的,并写、点的坐标;(2)直接写出的面积为_________________;(3)在x轴上找一点P,使的值最小,请标出点P的在坐标轴上的位置.20.(8分)将4个数,,,排成2行、2列,两边各加一条竖直线记成,定义,上述记号就叫做2阶行列式.若,求的值21.(8分)甲、乙两同学的家与学校的距离均为6400米.甲同学先步行400米,然后乘公交车去学校(由步行改乘公交车的时间忽略不计),乙同学骑自行车去学校,已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的3倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到8分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?22.(10分)观察下列等式:第1个等式:;第2个等式:;第3个等式:;第4个等式:;……请回答下列问题:(1)按以上规律,用含n的式子表示第n个等式:==(n为正整数)(2)求的值.23.(10分)先化简,再取一个你喜欢的的值带入并求值24.(10分)如图,在中,对角线,交于点,是上任意一点,连接并延长,交于点,连接,.(1)求证:四边形是平行四边形;(2)若,,.求出的边上的高的值.25.(12分)如图1,定义:在四边形中,若,则把四边形叫做互补四边形.(1)如图2,分别延长互补四边形两边、交于点,求证:.(2)如图3,在等腰中,,、分别为、上的点,四边形是互补四边形,,证明:.26.如图,在中,,,,在上,且,过点作射线(AN与BC在AC同侧),若动点从点出发,沿射线匀速运动,运动速度为/,设点运动时间为秒.(1)经过_______秒时,是等腰直角三角形?(2)当于点时,求此时的值;(3)过点作于点,已知,请问是否存在点,使是以为腰的等腰三角形?对存在的情况,请求出t的值,对不存在的情况,请说明理由.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据平行的性质及全等三角形的判定方法来确定图中存在的全等三角形共有三对:△ABC≌△DCB,△ABE≌△CDE,△BFE≌△CFE.再分别进行证明.【详解】解:①△ABC≌△DCB

∵AB∥EF∥DC

∴∠ABC=∠DCB

∵AB=DC,BC=BC

∴△ABC≌△DCB;

②△ABE≌△CDE

∵∠ABE=∠DCE,∠AEB=∠DEC,AB=DC

∴△ABE≌△CDE;

③△BFE≌△CFE

∵BE=EC,EF=EF,∠BEF=∠CEF

∴△BFE≌△CFE.

∴图中的全等三角形共有3对.故答案为:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2、C【分析】连接BE,则BE的长度即为PE与PC和的最小值.再利用等边三角形的性质可得∠PBC=∠PCB=30°,即可解决问题;【详解】解:如连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵△ABC是等边三角形,∴∠BCE=60°,∵BA=BC,AE=EC,∴BE⊥AC,∴∠BEC=90°,∴∠EBC=30°,∵PB=PC,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°,故选:C.【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.3、D【分析】根据勾股定理的逆定理可判断A、B两项,根据三角形的内角和定理可判断C、D两项,进而可得答案.【详解】解:A、∵,∴,∴∠C=90°,所以△ABC是直角三角形,本选项不符合题意;B、由可设,∵,∴∠C=90°,所以△ABC是直角三角形,本选项不符合题意;C、∵,∴,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,所以△ABC是直角三角形,本选项不符合题意;D、由可设,∵∠A+∠B+∠C=180°,∴=180°,解得:,∴,所以△ABC不是直角三角形,本选项符合题意.故选:D.【点睛】本题考查了勾股定理的逆定理和三角形的内角和定理,属于基础题型,熟练掌握勾股定理的逆定理是解题的关键.4、B【分析】求出∠B=30°,结合EF=2,得到BF,连接AF,根据垂直平分线的性质得到FA=FB=4,再证明∠DAF=∠D,得到DF=AF=4即可.【详解】解:∵DE⊥AB,则在△AED中,∵∠D=30°,∴∠DAE=60°,在Rt△ABC中,∵∠ACB=90°,∠BAC=60°,∴∠B=30°,在Rt△BEF中,∵∠B=30°,EF=2,∴BF=4,连接AF,∵DE是AB的垂直平分线,∴FA=FB=4,∠FAB=∠B=30°,∵∠BAC=60°,∴∠DAF=30°,∵∠D=30°,∴∠DAF=∠D,∴DF=AF=4,故选B.【点睛】本题考查了垂直平分线的判定和性质,直角三角形的性质,解题的关键是掌握相应定理,构造线段AF.5、C【分析】根据非负数的性质可知a,b,c的值,再由勾股定理的逆定理即可判断三角形为直角三角形.【详解】解:∵∴,,,∴,,又∵,故该三角形为直角三角形,故答案为:C.【点睛】本题考查了非负数的性质及勾股定理的逆定理,解题的关键是解出a,b,c的值,并正确运用勾股定理的逆定理.6、B【分析】结合最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.进行解答即可.【详解】解:A、,故本选项错误;B、是最简二次根式,故本选项正确;C、,故本选项错误;D、,故本选项错误;故选B.【点睛】本题考查了最简二次根式,熟练掌握最简二次根式的概念是解答本题的关键.7、A【分析】先把化成,再计算即可.【详解】先把化成,原式===48,故选A.【点睛】本题是对同底数幂乘除的考查,熟练掌握整式的乘除是解决本题的关键.8、B【解析】解:∵,∴.故选.点睛:此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.9、D【解析】要使分式有意义,分式的分母不能为0,即,解得x的取值范围即可.【详解】∵有意义,∴,解得:,故选:D.【点睛】解此类问题只要令分式中分母不等于0,求得字母的值即可.10、D【分析】分为两种情况:5cm是等腰三角形的底边或5cm是等腰三角形的腰.然后进一步根据三角形的三边关系进行分析能否构成三角形.【详解】解:当5cm是等腰三角形的底边时,则其腰长是(17-5)÷2=6(cm),能够组成三角形;

当5cm是等腰三角形的腰时,则其底边是17-5×2=7(cm),能够组成三角形.

故该等腰三角形的腰长为:6cm或5cm.

故选:D.【点睛】本题考查了等腰三角形的两腰相等的性质,三角形的三边关系,熟练掌握等腰三角形的性质是解题的关键.11、D【分析】令x=0,代入函数解析式,求得y的值,即可得到答案.【详解】令x=0,代入得:,∴一次函数的图象与轴的交点坐标是:(0,1).故选D.【点睛】本题主要考查一次函数图象与y轴的交点坐标,掌握直线与y轴的交点坐标的特征,是解题的关键.12、A【分析】科学记数法的表示形式为:(其中1≤∣a∣﹤10,n为整数),当原数的绝对值小于1时,n为负数,且绝对值为原数左起第一个不为零的数字前零的个数,再确定a值即可.【详解】0.00000095=,故选:A.【点睛】本题考查科学记数法表示较小的数,熟练掌握科学记数法的表示形式,会确定a值和n值是解答的关键.二、填空题(每题4分,共24分)13、【分析】分式要有意义只需分母不为零即可.【详解】由题意得:x+1≠0,解得x≠﹣1.故答案为:x≠﹣1.【点睛】本题考查分式有意义的条件,关键在于熟练掌握基础知识.14、.【分析】分式的值为零,分子等于零且分母不等于零.【详解】解:由题意可得解得:故答案为:.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.15、①④【分析】先将原式转化为完全平方公式,再根据非负数的性质得出a=b=c.进而判断即可.【详解】解:∵a2+b2+c2=ab+bc+ca,

∴2a2+2b2+2c2=2ab+2bc+2ca,

即(a-b)2+(b-c)2+(a-c)2=0,

∴a=b=c,

∴此三角形为等边三角形,同时也是锐角三角形.

故答案是:①④.【点睛】此题考查了因式分解的应用,根据式子特点,将原式转化为完全平方公式是解题的关键.16、>【分析】根据二次根式的性质,对、进行变形,进而即可得到答案.【详解】∵=,=,>,∴>,故答案是:>.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质,是解题的关键.17、【分析】延长AD到E,使DE=AD,然后利用“边角边”证明△ABD和△ECD全等,根据全等三角形对应边相等可得CE=AB,然后根据三角形任意两边之和大于第三边,两边之差小于第三边求出AE的取值范围,然后即可得解.【详解】解:如图,延长AD到E,使DE=AD,∵AD是BC边上的中线,∴BD=CD,在△ACD和△EBD中,,∴△ACD≌△EBD(SAS),∴AC=BE,∵AB=6,AC=3,∴6-3<AE<6+3,即3<AE<9,∴1.1<AD<4.1.故答案为:1.1<AD<4.1.【点睛】本题考查了三角形的三边关系,全等三角形的判定与性质,遇中点加倍延,作辅助线构造出全等三角形是解题的关键.18、1.【分析】连接AO,由于△ABC是等腰三角形,点O是BC边的中点,故AO⊥BC,再根据勾股定理求出AO的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AO的长为CP+PO的最小值,由此即可得出结论.【详解】连接AO,

∵△ABC是等腰三角形,点O是BC边的中点,

∴AO⊥BC,∴,∵EF是线段AC的垂直平分线,

∴点C关于直线EF的对称点为点A,

∴AO的长为CP+PO的最小值,∴△OPC周长的最小值.故答案为:1.【点睛】本题考查的是轴对称-最短路线问题以及勾股定理,熟知等腰三角形三线合一的性质是解答此题的关键.三、解答题(共78分)19、(1)见解析,B1(−2,−4),C1(−4,−1);(2)5;(3)见解析【分析】(1)根据轴对称的定义直接画图,写坐标即可;(2)如图,用矩形面积减轻多余三角形的面积即可;(3)作点A关于x轴的对称点A',连接A'C,交x轴于点P,即为所求作点.【详解】解:(1)如图所示:B1(−2,−4),C1(−4,−1);(2)如图:面积为:;(3)如图所示:点P即为所求点.【点睛】平面直角坐标系中如果图形的面积不易直接计算,一般采用割补法进行;求直线同侧两定点到直线上一点的距离之和最短,一般称为“将军饮马”问题,一般做其中一点关于直线的对称点,连接对称点和另一点构造线段,与直线交点即为所求做点,是中考常见模型,要深刻领会.20、【分析】首先根据2阶行列式的运算法则列出关于x的方程,然后利用多项式乘多项式的法则展开得到关于x的一元一次方程,最后解这个一元一次方程即可.【详解】解:根据题意化简得:,整理得:,即,解得:.【点睛】本题主要考查的是乘法公式,解一元一次方程,根据二阶行列式的运算法则列出方程是解题的关键.21、(1)乙骑自行车的速度为1m/min;(2)乙同学离学校还有3200m【分析】(1)设乙骑自行车的速度为xm/min,则公交车的速度是3xm/min,甲步行速度是xm/min,根据题意列方程即可得到结论;

(2)8×1=3200米即可得到结果.【详解】解:(1)设乙骑自行车的速度为xm/min,则公交车的速度是3xm/min,甲步行速度是xm/min,由题意得:.解得:x=1.经检验x=1原方程的解答:乙骑自行车的速度为1m/min.(2)当甲到达学校时,乙同学还要继续骑行8分钟,所以8×1=3200(m).答:乙同学离学校还有3200m.【点睛】此题主要考查了分式方程的应用,根据题意得到甲的运动速度是解题关键.22、(1);;(2)【分析】(1)观察等式数字变化规律即可得出第n个等式;(2)利用积化和差计算出a1+a2+a3+…+a100的值.【详解】解:(1)解:;;;;……故答案为:;(2)=====【点睛】此题考查数字的变化规律,从简单情形入手,找出一般规律,利用规律解决问题.23、,x=1时值为1.【分析】先对分式进行化简,要是分式有意义,则需要使在整个运算过程中的分母不为0,取值时避开这些使分母为0的数即可.【详解】解:原式要使分式有意义,则0,1,-1则当时,代入得【点睛】本题主要考查的是分式的化简求值以及使分式有意义的条件,掌握这两个知识点并正确的运用是解题的关键.24、(1)详见解析;(2)【分析】(1)根据平行四边形性质得BO=DO,AO=CO,AD∥BC,构造条件证△AOE≌△COF(ASA),证CF=AE,CF∥AE,即可;(2)作AH⊥BC,根据直角三角形性质得CH=,再运用勾股定理可得.【详解】证明:(1)∵在▱ABCD中,AC,BD交于点O,

∴BO=DO,AO=CO,AD∥BC,

∴∠OAE=∠OCF,

在△AOE和△COF中

,

∴△AOE≌△COF(ASA),

∴CF=AE,

∵CF∥AE,∴四边形AFCE是平行四边形.(2)作AH⊥BC,因为四边形是平行四边形,所以AD∥BC,所以∠DAH=∠AHC=90°,因为,所以∠CAH=30°,所以CH=所以AH=所以的边上的高的值是.【点睛】考核知识点:勾股定理,平行四边形性质和判定.熟练运用平行四边形性质和勾股定理是关键.25、(1)见解析;(2)见解析.【分析】(1)结合互补四边形的定义,利用三角形外角的性质可证,利用三角形内角和定理可证,由此可证;(2)根据(1)的结论结合,可证,再根据等腰三角形的性质可证,再利用公共边AB可证明≌,根据全等三角形的性质和互补四边形的定义可证,再根据勾股

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论