哈尔滨松北区七校联考2025届数学八上期末学业水平测试试题含解析_第1页
哈尔滨松北区七校联考2025届数学八上期末学业水平测试试题含解析_第2页
哈尔滨松北区七校联考2025届数学八上期末学业水平测试试题含解析_第3页
哈尔滨松北区七校联考2025届数学八上期末学业水平测试试题含解析_第4页
哈尔滨松北区七校联考2025届数学八上期末学业水平测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

哈尔滨松北区七校联考2025届数学八上期末学业水平测试试题测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下面是“北”“比”“鼎”“射”四个字的甲骨文,其中不是轴对称图形的是()A. B. C. D.2.下列说法正确的是()A.16的平方根是4 B.﹣1的立方根是﹣1C.是无理数 D.的算术平方根是33.等腰三角形的一个内角为50°,则另外两个角的度数分别为()A.65°,65° B.50°,80° C.65°,65°或50°,80° D.50°,50°4.如图,动点在平面直角坐标系中按图中箭头所示方向运动,第次从原点运动到点,第次接着运动到点,第次接着运动到点,···,按这样的运动规律,经过第次运动后,动点的坐标是()A. B. C. D.5.平面直角坐标系中,点P的坐标是(2,-1),则直线OP经过下列哪个点()A. B. C. D.6.已知一次函数图象上的三点,,,则,,的大小关系是()A. B. C. D.7.估计的值在()A.和之间 B.和之间 C.和之间 D.和之间8.已知函数的部分函数值如下表所示,则该函数的图象不经过()…-2-101……0369…A.第一象限 B.第二象限 C.第三象限 D.第四象限9.下列因式分解正确的是()A. B.C. D.10.如图,在△中,,将△绕点顺时针旋转,得到△,连接,若,,则线段的长为()A. B. C. D.11.下列图形中,对称轴条数最多的图形是()A. B. C. D.12.如图,在中,,是高,,,则的长为()A. B. C. D.二、填空题(每题4分,共24分)13.关于x、y的方程组与有相同的解,则a+b的值为____.14.如图,将平行四边形ABCD的边DC延长到E,使,连接AE交BC于F,,当______时,四边形ABEC是矩形.15.如图,等边的边长为2,则点B的坐标为_____.16.若是一个完全平方式,则m的值是__________.17.如图,边长为的菱形中,.连结对角线,以为边作第二个菱形,使.连结,再以为边作第三个菱形,使,一按此规律所作的第个菱形的边长是__________.18.已知一次函数y=-x+3,当0≤x≤2时,y的最大值是.三、解答题(共78分)19.(8分)如图,直角坐标系中,一次函数的图像分别与、轴交于两点,正比例函数的图像与交于点.(1)求的值及的解析式;(2)求的值;(3)在坐标轴上找一点,使以为腰的为等腰三角形,请直接写出点的坐标.20.(8分)如图,一辆货车和一辆轿车先后从甲地开往乙地,线段OA表示货车离开甲地的距离y(km)与时间x(h)之间的函数关系;折线BCD表示轿车离开甲地的距离y(km)与时间x(h)之间的函数关系.请根据图象解答下列问题:(1)甲、乙两地相距km,轿车比货车晚出发h;(2)求线段CD所在直线的函数表达式;(3)货车出发多长时间两车相遇?此时两车距离甲地多远?21.(8分)(背景知识)研究平面直角坐标系,我们可以发现一条重要的规律:若平面直角坐标系上有两个不同的点、,则线段AB的中点坐标可以表示为(简单应用)如图1,直线AB与y轴交于点,与x轴交于点,过原点O的直线L将分成面积相等的两部分,请求出直线L的解析式;(探究升级)小明发现“若四边形一条对角线平分四边形的面积,则这条对角线必经过另一条对角线的中点”如图2,在四边形ABCD中,对角线AC、BD相交于点O,试说明;(综合运用)如图3,在平面直角坐标系中,,,若OC恰好平分四边形OACB的面积,求点C的坐标.22.(10分)我们知道,假分数可以化为整数与真分数的和的形式.例如:,在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像,,⋯⋯这样的分式是假分式;像,,⋯⋯这样的分式是真分式.类似的,假分式也可以化为整数与真分式的和的形式.例如:;;或(1)分式是分式(填“真”或“假”)(2)将分式化为整式与真分式的和的形式;(3)如果分式的值为整数,求的整数值.23.(10分)约分:(1)(2)24.(10分)某超市每天都用360元从批发商城批发甲乙两种型号“垃圾分类”垃圾桶进行零售,批发价和零售价如下表所示:批发价(元个)零售价(元/个)甲型号垃圾桶1216乙型号垃圾桶3036若设该超市每天批发甲型号“垃圾分类”垃圾桶x个,乙型号“垃圾分类”垃圾桶y个,(1)求y关于x的函数表达式.(2)若某天该超市老板想将两种型号的“垃圾分类”垃圾桶全部售完后,所获利润率不低于30%,则该超市至少批发甲型号“垃圾分类”垃圾桶多少个?(利润率=利润/成本).25.(12分)一项工程,如果由甲队单独做这项工程刚好如期完成,若乙队单独做这项工程,要比规定日期多5天完成.现由若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.已知甲、乙两队施工一天的工程费分别为16万元和14万元.(1)求规定如期完成的天数.(2)现有两种施工方案:方案一:由甲队单独完成;方案二:先由甲、乙合作4天,再由乙队完成其余部分;通过计算说明,哪一种方案比较合算.26.已知△ABC与△A’B’C’关于直线l对称,其中CA=CB,连接,交直线l于点D(C与D不重合)(1)如图1,若∠ACB=40°,∠1=30°,求∠2的度数;(2)若∠ACB=40°,且0°<∠BCD<110°,求∠2的度数;(3)如图2,若∠ACB=60°,且0°<∠BCD<120°,求证:BD=AD+CD.

参考答案一、选择题(每题4分,共48分)1、B【解析】根据轴对称的定义,逐一判断选项,即可得到答案.【详解】A是轴对称图形,不符合题意,B不是轴对称图形,符合题意,C是轴对称图形,不符合题意,D是轴对称图形,不符合题意,故选B.【点睛】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.2、B【分析】分别根据平方根的定义、立方根的定义、无理数的定义以及算术平方根的定义逐一判断即可.【详解】解:A.16的平方根是±4,故本选项不合题意;B.﹣1的立方根是﹣1,正确,故本选项符合题意;C.=5,是有理数,故本选项不合题意;D.是算术平方根是,故本选项不合题意.故选:B.【点睛】本题主要考查了算术平方根、平方根、立方根、无理数,熟记相关定义是解答本题的关键.3、C【分析】根据分类讨论已知角是顶角还是底角,进行分析,从而得到答案【详解】解:当已知角是底角时,另外两个角分别为:50°,80°;

当已知角是顶角时,另外两个角分别是:65°,65°.

故应选C.4、B【分析】观察可得点P的变化规律,“(n为自然数)”,由此即可得出结论.【详解】观察,,发现规律:(n为自然数).∵∴点的坐标为.故选:B.【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“(n为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.5、B【解析】先求出直线OP的表达式,再把四个选项带人公式即可.【详解】∵点P的坐标是(2,-1),∴设直线OP的表达式为:y=kx,把(2,-1)代入,解得k=-,y=-x.把(-1,2),(-2,1),(1,-2),(4,-)代入y=﹣x,(-2,1)满足条件.故选:B.【点睛】本题考查的是平面直角坐标系,熟练掌握一次函数是解题的关键.6、A【分析】利用一次函数的增减性即可得.【详解】一次函数中的则一次函数的增减性为:y随x的增大而减小故选:A.【点睛】本题考查了一次函数的图象特征,掌握并灵活运用函数的增减性是解题关键.7、D【分析】利用算术平方根进行估算求解.【详解】解:∵∴故选:D.【点睛】本题考查无理数的估算,掌握算术平方根的概念正确进行计算从而进行估算是本题的解题关键.8、D【解析】根据点的坐标,利用待定系数法可求出一次函数解析式,再利用一次函数图象与系数的关系可得出一次函数y=3x+1的图象经过第一、二、三象限,此题得解.【详解】解:将(-2,0),(-1,3)代入y=kx+b,得:,

解得:,

∴一次函数的解析式为y=3x+1.

∵3>0,1>0,

∴一次函数y=3x+1的图象经过第一、二、三象限.

故选:D.【点睛】本题考查了待定系数法求一次函数解析式以及一次函数图象与系数的关系,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.9、D【解析】直接利用提取公因式法以及公式法分解因式,进而判断即可.【详解】A、,故此选项错误;B、,无法分解因式,故此选项错误;C、,无法分解因式,故此选项错误;D、,正确,故选D.【点睛】本题考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.10、A【分析】根据旋转的性质可知:DE=BC=1,AB=AD,应用勾股定理求出AB的长;又由旋转的性质可知:∠BAD=90°,再用勾股定理即可求出BD的长【详解】解:由旋转的性质得到:,∠BAD=90°∴AC=AE=3,BC=DE=1,AB=AD,∵∠ACB=90°∴AB=AD==在Rt△BAD中,根据勾股定理得:BD===2故选A11、D【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A选项图形有4条对称轴;B选项图形有5条对称轴;C选项图形有6条对称轴;D选项图形有无数条对称轴∴对称轴的条数最多的图形是D选项图形,故选:D.【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴.12、B【分析】根据同角的余角相等可得∠BCD=∠A=30°,然后根据30°所对的直角边是斜边的一半即可依次求出BC和AB.【详解】解:∵,是高∴∠ACB=∠ADC=90°∴∠BCD+∠ACD=∠A+∠ACD=90°∴∠BCD=∠A=30°在Rt△BCD中,BC=2BD=4cm在Rt△ABC中,AB=2BC=8cm故选B.【点睛】此题考查的是余角的性质和直角三角形的性质,掌握同角的余角相等和30°所对的直角边是斜边的一半是解决此题的关键.二、填空题(每题4分,共24分)13、5【分析】联立不含a与b的方程,组成方程组,求出x与y的值,进而确定出a与b的值,代入原式计算即可求出值.【详解】联立得:,①×3+②得:11x=11,解得:x=1,把x=1代入①得:y=﹣2,∴方程组的解为,把代入得:,即,④×2﹣③得:9b=27,解得:b=3,把b=3代入④得:a=2,∴a+b=3+2=5,故答案为:5【点睛】本题主要考查二元一次方程组的解的定义以及二元一次方程组的解法,掌握加减消元法解方程组,是解题的关键.14、1【分析】首先根据四边形ABCD是平行四边形,得到四边形ABEC是平行四边形,然后证得FC=FE,利用对角线互相相等的四边形是矩形判定四边形ABEC是矩形.【详解】解:当∠AFC=1∠D时,四边形ABEC是矩形.∵四边形ABCD是平行四边形,∴BC∥AD,∠BCE=∠D,由题意易得AB∥EC,AB∥EC,∴四边形ABEC是平行四边形.∵∠AFC=∠FEC+∠BCE,∴当∠AFC=1∠D时,则有∠FEC=∠FCE,∴FC=FE,∴四边形ABEC是矩形,故答案为1.【点睛】此题考查了平行四边形的性质以及矩形的判定.此题难度适中,注意掌握数形结合思想的应用,解题的关键是了解矩形的判定定理.15、.【分析】过B作BD⊥OA于D,则∠BDO=90°,根据等边三角形性质求出OD,根据勾股定理求出BD,即可得出答案.【详解】解:如图,过B作BD⊥OA于D,则∠BDO=90°,∵△OAB是等边三角形,在Rt△BDO中,由勾股定理得:.∴点B的坐标为:.故答案为:.【点睛】本题考查了等边三角形的性质,坐标与图形和勾股定理.能正确作出辅助线,构造Rt△BDO是解决此题的关键.16、1或-1【分析】根据完全平方式的形式即可求出m的值.【详解】根据题意得,或,故答案为:1或-1.【点睛】本题主要考查完全平方式,掌握完全平方式的形式是解题的关键.17、1.【解析】连接DB于AC相交于M,根据已知和菱形的性质可分别求得AC,AE,AG的长,从而可发现规律根据规律不难求得第n个菱形的边长.【详解】连接DB交AC于M.∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=()2,AG=AE=()3,按此规律所作的第n个菱形的边长为()n-1,∴第2017个菱形的边长是()2016=1.故答案为:1.【点睛】此题主要考查菱形的性质、等边三角形的判定和性质以及学生探索规律的能力.18、1.【解析】试题分析:∵一次函数y=-x+1中k=-1<0,∴一次函数y=-x+1是减函数,∴当x最小时,y最大,∵0≤x≤2,∴当x=0时,y最大=1.考点:一次函数的性质.三、解答题(共78分)19、(1)m=4,l2的解析式为;(2)5;(3)点P的坐标为(),(0,),(0,5),(5,0),(8,0),(0,6).【分析】(1)先求得点C的坐标,再运用待定系数法即可得到l2的解析式;(2)过C作CD⊥AO于D,CE⊥BO于E,则CD=3,CE=4,再根据A(10,0),B(0,5),可得AO=10,BO=5,进而得出S△AOC-S△BOC的值;(3)由等腰三角形的定义,可对点P进行分类讨论,分别求出点P的坐标即可.【详解】解:(1)把C(m,3)代入一次函数,可得,解得m=4,∴C(4,3),设l2的解析式为y=ax,则3=4a,解得:a=,∴l2的解析式为:;(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=3,CE=4,由,令x=0,则y=5;令y=0,则x=10,∴A(10,0),B(0,5),∴AO=10,BO=5,∴S△AOC-S△BOC=×10×3×5×4=15-10=5;(3)∵是以为腰的等腰三角形,则点P的位置有6种情况,如图:∵点C的坐标为:(4,3),∴,∴,∴点P的坐标为:(),(0,),(0,5),(5,0),(8,0),(0,6).【点睛】本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰三角形的性质,勾股定理及分类讨论思想等.20、(1)300;1.2(2)y=110x﹣195(3)3.9;234千米【分析】(1)由图象可求解;

(2)利用待定系数法求解析式;

(3)求出OA解析式,联立方程组,可求解.【详解】解:(1)由图象可得:甲、乙两地相距300km,轿车比货车晚出发1.2小时;故答案为:300;1.2;(2)设线段CD所在直线的函数表达式为:y=kx+b,由题意可得:解得:∴线段CD所在直线的函数表达式为:y=110x﹣195;(3)设OA解析式为:y=mx,由题意可得:300=5m,∴m=60,∴OA解析式为:y=60x,∴∴答:货车出发3.9小时两车相遇,此时两车距离甲地234千米.【点睛】本题考查了一次函数的应用,理解图象,是本题的关键.21、[简单应用][探究升级][综合运用]【分析】简单应用:先判断出直线L过线段AB的中点,再求出线段AB的中点,最后用待定系数法即可得出结论;探究升级:先判断出,进而判断出≌,即可得出结论;综合运用:借助“探究升级”的结论判断出直线OC过线段AB的中点,进而求出直线OC的解析式,最后将点C坐标代入即可得出结论.【详解】解:简单应用:直线L将分成面积相等的两部分,直线L必过相等AB的中点,设线段AB的中点为E,,,,,直线L过原点,设直线L的解析式为,,,直线L的解析式为;探究升级:如图2,过点A作于F,过点C作于G,,,,,,在和中,,≌,;综合运用:如图3,由探究升级知,若四边形一条对角线平分四边形的面积,则这条对角线必经过另一条对角线的中点,恰好平分四边形OACB的面积,过四边形OACB的对角线OA的中点,连接AB,设线段AB的中点为H,,,,设直线OC的解析式为,,,,直线OC的解析式为,点在直线OC上,,,【点睛】此题是一次函数综合题,主要考查了待定系数法,三角形的中线的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键.22、(1)真;(2);(1)x=0或2或-1或1【分析】(1)根据新定义和分子、分母的次数即可判断;(2)根据例题的变形方法,即可得出结论;(1)先根据例题的变形方法,将原分式化为整式与真分式的和的形式,然后根据式子的特征即可得出结论.【详解】解:(1)∵分子8的次数为0,分母的次数为1∴分式是真分式,故答案为:真;(2)根据例题的变形方法:故答案为:;(1)∵分式的值为整数,∴也必须为整数∵x也为整数∴或解得:x=0或2或-1或1.【点睛】此题考查的是与分式有关的新定义类问题、整式次数的判定和分式的相关运算,根据新定义及例题的变形方法解决相关问题是解决此题的关键.23、(1);(2)【分析】(1)直接将分子与分母分解因式进而化简得出答案;(2)直接将分子与分母分解因式进而化简得出答案.【详解】解:(1)=;(2)原式==.【点睛】平方差、完全平方和、完全平方差公式是初中数学必需完全掌握的知识点.24、(1);(2)23.【分析】(1)根据甲、乙两型号垃圾桶的批发价和个数、总花费列出等式,再进行等式变形即可得;(2)先根据表格中的数据求出利润的表达式,再根据“利润率利润/成本”得出一个不等式,然后结合题(1)求解即可.【详解】(1)由题意得:整理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论