版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京大兴区北臧村中学2025届数学八上期末统考模拟试题试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.练习中,小亮同学做了如下4道因式分解题,你认为小亮做得正确的有①②③④A.1个 B.2个 C.3个 D.4个2.下列线段长能构成三角形的是()A.3、4、8 B.2、3、6 C.5、6、11 D.5、6、103.在给出的一组数,,,,,中,是无理数的有()A.1个 B.2个 C.3个 D.5个4.如图,中,,,,则的度数等于()A. B. C. D.5.一辆客车从霍山开往合肥,设客车出发th后与合肥的距离为skm,则下列图象中能大致反映s与t之间函数关系的是()A. B. C. D.6.下列各点在函数图象上的是()A. B. C. D.7.2的平方根是()A.2 B.-2 C. D.8.如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC9.解分式方程时,去分母化为一元一次方程,正确的是()A.x+2=3 B.x﹣2=3 C.x﹣2=3(2x﹣1) D.x+2=3(2x﹣1)10.语句“的与的和不超过”可以表示为()A. B. C. D.二、填空题(每小题3分,共24分)11.当分别取-2019、-2018、-2017、...、-3、-2、-1、0、1、、、...、、、时,计算分式的值,再将所得结果相加,其和等于________12.如图,△ABE和△ACD是△ABC分别沿着AB,AC边翻折180°形成的,若∠BAC=140°,则∠a的度数是________13.若点和点关于x轴对称,则的值是____.14.当____________时,解分式方程会出现增根.15.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了__________步路(假设2步为1米),却踩伤了花草.16.如图,在△ABC中,∠A=∠B,D是AB边上任意一点DE∥BC,DF∥AC,AC=5cm,则四边形DECF的周长是_____.17.由,得到的条件是:______1.18.如图,等腰三角形ABC的底边BC长为8cm,面积是48,腰AB的垂直平分线EF分别交AB,AC于点E,F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为___________.三、解答题(共66分)19.(10分)化简求值:,其中,.20.(6分)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示(1)根据图象信息,当t=分钟时甲乙两人相遇,甲的速度为米/分钟;(2)求出线段AB所表示的函数表达式(3)甲、乙两人何时相距400米?21.(6分)如图所示,点O是等边三角形ABC内一点,∠AOB=110°,∠BOC=α,以OC为边作等边三角形OCD,连接AD.(1)当α=150°时,试判断△AOD的形状,并说明理由;(2)探究:当a为多少度时,△AOD是等腰三角形?22.(8分)2019年8月,第18届世界警察和消防员运动会在成都举行.我们在体育馆随机调查了部分市民当天的观赛时间,并用得到的数据绘制了如下不完整的统计图,根据图中信息完成下列问题:(1)将条形统计图补充完整;(2)求抽查的市民观赛时间的众数、中位数;(3)求所有被调查市民的平均观赛时间.23.(8分)节约用水是我们的美德,水龙头关闭不严会造成滴水,容器内盛水与滴水时间的关系用可以显示水量的容器做如图的试验,并根据试验数据绘制出如图的函数图象,结合图象解答下列问题.()容器内原有水多少升.()求与之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升.24.(8分)如图,BD平分∠ABC交AC于点D,DE⊥AB于E,DF⊥BC于F,AB=6,若S△ABD=12,求DF的长.25.(10分)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE与AC交于E.(1)当∠BDA=115°时,∠BAD=_____°,∠DEC=_____°;当点D从B向C运动时,∠BDA逐渐变______(填”大”或”小”);(2)当DC=AB=2时,△ABD与△DCE是否全等?请说明理由:(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.26.(10分)已知中,为的中点.(1)如图1,若分别是上的点,且.求证:为等腰直角三角形;(2)若分别为延长线上的点,如图2,仍有,其他条件不变,那么是否仍为等腰直角三角形?请证明你的结论.
参考答案一、选择题(每小题3分,共30分)1、B【解析】试题解析:①x3+x=x(x2+1),不符合题意;②x2-2xy+y2=(x-y)2,符合题意;③a2-a+1不能分解,不符合题意;④x2-16y2=(x+4y)(x-4y),符合题意,故选B2、D【分析】根据三角形任意两边之和都大于第三边逐个判断即可.【详解】解:A、3+4<8,不符合三角形三边关系定理,故本选项错误;B、2+3<6,不符合三角形三边关系定理,故本选项错误;C、5+6=11,不符合三角形三边关系定理,故本选项错误;D、5+6>10,6+10>5,5+10>6,符合三角形三边关系定理,故本选项正确;故选D.【点睛】本题考查了三角形的三边关系定理的应用,主要考查学生对三角形的三边关系定理的理解能力,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.3、B【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】0.3,3.14,是有限小数,是有理数;,是分数,是有理数;,是无理数,共2个,故选:B.【点睛】本题主要考查了无理数的定义.初中范围内学习的无理数有:含的数等;开方开不尽的数;以及0.1010010001…,等有这样规律的数.4、B【分析】先根据等腰三角形的性质可求出的度数,再根据三角形的外角性质即可得.【详解】故选:B.【点睛】本题考查了等腰三角形的性质、三角形的外角性质,熟记各性质是解题关键.5、B【解析】分析:因为匀速行驶,图象为线段,时间和路程是正数,客车从霍山出发开往合肥,客车与合肥的距离越来越近,路程由大变小,由此选择合理的答案.详解:客车是匀速行驶的,图象为线段,s表示客车从霍山出发后与合肥的距离,s会逐渐减小为0;A、C、D都不符.故选B.点睛:本题主要考查了函数图象,解题时应首先看清横轴和纵轴表示的量,然后根据实际情况采用排除法求解.6、A【分析】依据函数图像上点的坐标满足解析式可得答案.【详解】解:把代入解析式得:符合题意,而,,均不满足解析式,所以不符合题意.故选A.【点睛】本题考查的是图像上点的坐标满足解析式,反之,坐标满足解析式的点在函数图像上,掌握此知识是解题的关键.7、D【分析】根据平方根的定义:如果一个数的平方等于,这个数就叫做的平方根,即可得解.【详解】由题意,得故选:D.【点睛】此题主要考查对平方根的理解,熟练掌握,即可解题.8、D【分析】两个三角形有公共边AD,可利用SSS,SAS,ASA,AAS的方法判断全等三角形.解答:【详解】分析:∵AD=AD,A、当BD=DC,AB=AC时,利用SSS证明△ABD≌△ACD,正确;B、当∠ADB=∠ADC,BD=DC时,利用SAS证明△ABD≌△ACD,正确;C、当∠B=∠C,∠BAD=∠CAD时,利用AAS证明△ABD≌△ACD,正确;D、当∠B=∠C,BD=DC时,符合SSA的位置关系,不能证明△ABD≌△ACD,错误.故选D.【点睛】本题考查全等三角形的判定,熟练掌握判定定理是关键.9、C【分析】最简公分母是2x﹣1,方程两边都乘以(2x﹣1),即可把分式方程便可转化成一元一次方程.【详解】方程两边都乘以(2x﹣1),得x﹣2=3(2x﹣1),故选C.【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.10、A【分析】x的即x,不超过1是小于或等于1的数,由此列出式子即可.【详解】“x的与x的和不超过1”用不等式表示为x+x≤1.故选A.【点睛】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.二、填空题(每小题3分,共24分)11、-1【分析】设a为负整数,将x=a代入得,将代入得,故此可知当x互为负倒数时,两分式的和为0,然后求得分式的值即可.【详解】解:∵将x=a时,代入得,将时,代入得:,∴+,即当x互为负倒数时,两分式的和为0,当时,代入故互为负倒数的相加全为0,只有时为-1.∴所有结果相加为-1.故答案为:-1.【点睛】本题主要考查的是数字的变化规律和分式的加减,发现当x的值互为负倒数时,两分式的和为0是解题的关键.12、80°【分析】先根据三角形内角和与翻折变换的特点求得∠EBC+∠DCB=80°,再根据三角形的一个外角等于和它不相邻的两个内角的和得∠a=80°.【详解】解:∵∠BAC=140°,∴∠ABC+∠ACB=40°,由翻折的性质可知:∠EBA=∠ABC,∠DCA=∠ACB,∴∠EBA+∠ABC+∠DCA+∠ACB=2(∠ABC+∠ACB)=80°,即∠EBC+∠DCB=80°,∴∠a=∠EBC+∠DCB=80°.故答案为:80°.【点睛】本题考查了折叠的性质,掌握折叠前后图形是全等的是解题的关键.13、【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,先求出m、n的值,再计算(-n)m的值【详解】解:∵A(m,n)与点B(3,2)关于x轴对称,
∴m=3,n=2,
∴(-n)m=(-2)3=-1.
故答案为:-1【点睛】此题主要考查了关于x轴、y轴对称的点的坐标,解决此类题的关键是掌握好对称点的坐标规律:
(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;
(3)关于原点对称的点,横坐标与纵坐标都互为相反数.14、1【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m,由分母可知,分式方程的增根是3,当x=3时,3-5=-m,解得m=1,故答案为1.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.15、8【分析】先根据勾股定理求出斜边的长,与直角边进行比较即可求得结果.【详解】解:由题意得,斜边长AB===10米,则少走(6+8-10)×2=8步路,故答案为8.【点睛】本题考查的是勾股定理的应用,属于基础应用题,只需学生熟练掌握勾股定理,即可完成.16、10cm【解析】求出BC,求出BF=DF,DE=AE,代入得出四边形DECF的周长等于BC+AC,代入求出即可.【详解】解:∵∠A=∠B,
∴BC=AC=5cm,
∵DF∥AC,
∴∠A=∠BDF,
∵∠A=∠B,
∴∠B=∠BDF,
∴DF=BF,
同理AE=DE,
∴四边形DECF的周长为:CF+DF+DE+CE=CF+BF+AE+CE=BC+AC=5cm+5cm=10cm,
故答案为10cm.【点睛】本题考查了平行线的性质,等腰三角形的性质和判定,关键是求出BF=DF,DE=AE.17、【分析】观察不等式两边同时乘以一个数后,不等式的方向没有改变,由此依据不等式的性质进行求解即可.【详解】∵由,得到,∴c2>1,∴c≠1,故答案为:≠.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变;基本性质2:不等式两边同时乘以(或除以)同一个大于1的整式,不等号方向不变;基本性质3:不等式两边同时乘以(或除以)同一个小于1的整式,不等号方向改变.18、16cm(没单位扣1分).【分析】连接AD交EF于点,连接AM,由线段垂直平分线的性质可知AM=MB,则,故此当A、M、D在一条直线上时,有最小值,然后依据三角形三线合一的性质可证明AD为△ABC底边上的高线,依据三角形的面积为48可求得AD的长;【详解】连接AD交EF于点,连接AM,∵△ABC是等腰三角形,点D是BC边的中点,∴,∴,∴,∵EF是线段AB的垂直平分线,∴AM=MB,∴,∴当点M位于时,有最小值,最小值为6,∴△BDM的周长的最小值为;故答案是16cm.【点睛】本题主要考查了三角形综合,结合垂直平分线的性质计算是关键.三、解答题(共66分)19、xy+5y2,19【分析】通过整式的混合运算对原式先进行化简,再将和的值代入即可得解.【详解】原式将,代入,原式.【点睛】本题主要考查了整式的先化简再求值,熟练掌握整式的混合运算是解决本题的关键.20、(1)24,40;(2)y=40t(40≤t≤60);(3)出发20分钟或28分钟后,甲、乙两人何时相距400米【分析】(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲60分钟行驶2400米,根据速度=路程÷时间可得甲的速度;(2)由t=24分钟时甲乙两人相遇,可得甲、乙两人的速度和为2400÷24=100米/分钟,减去甲的速度得出乙的速度,再求出乙从图书馆回学校的时间即A点的横坐标,用A点的横坐标乘以甲的速度得出A点的纵坐标,再将A、B两点的坐标代入,利用待定系数法即可求出线段AB所表示的函数表达式;(3)分相遇前后两种情况列方程解答即可.【详解】解:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为2400÷60=40(米/分钟).故答案为24,40;(2)∵甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,t=24分钟时甲乙两人相遇,∴甲、乙两人的速度和为2400÷24=100米/分钟,∴乙的速度为100﹣40=60(米/分钟).乙从图书馆回学校的时间为2400÷60=40分钟,40×40=1600,∴A点的坐标为(40,1600).设线段AB所表示的函数表达式为y=kt+b,∵A(40,1600),B(60,2400),∴,解得,∴线段AB所表示的函数表达式为y=40t(40≤t≤60);(3)设出发t分钟后两人相距400米,根据题意得(40+60)t=2400﹣400或(40+60)t=2400+400,解得t=20或t=28,答:出发20分钟或28分钟后,甲、乙两人何时相距400米.【点睛】本题考查了一次函数的应用,路程、速度、时间的关系,用待定系数法确定函数的解析式,属于中考常考题型.读懂题目信息,从图象中获取有关信息是解题的关键.21、(1)△AOD是直角三角形;(2)当α为110°、125°、140°时,三角形AOD是等腰三角形.【解析】试题分析:(1)首先根据已知条件可以证明△BOC≌△ADC,然后利用全等三角形的性质可以求出∠ADO的度数,由此即可判定△AOD的形状;(2)利用(1)和已知条件及等腰三角形的性质即可求解.试题解析:(1)∵△OCD是等边三角形,∴OC=CD,而△ABC是等边三角形,∴BC=AC,∵∠ACB=∠OCD=60°,∴∠BCO=∠ACD,在△BOC与△ADC中,∵,∴△BOC≌△ADC,∴∠BOC=∠ADC,而∠BOC=α=150°,∠ODC=60°,∴∠ADO=150°-60°=90°,∴△ADO是直角三角形;(2)∵设∠CBO=∠CAD=a,∠ABO=b,∠BAO=c,∠CAO=d,则a+b=60°,b+c=180°-110°=70°,c+d=60°,a+d=50°∠DAO=50°,∴b-d=10°,∴(60°-a)-d=10°,∴a+d=50°,即∠CAO=50°,①要使AO=AD,需∠AOD=∠ADO,∴190°-α=α-60°,∴α=125°;②要使OA=OD,需∠OAD=∠ADO,∴α-60°=50°,∴α=110°;③要使OD=AD,需∠OAD=∠AOD,∴190°-α=50°,∴α=140°.所以当α为110°、125°、140°时,三角形AOD是等腰三角形.考点:1.等边三角形的判定与性质;2.全等三角形的判定与性质;3.等腰三角形的判定.22、(1)答案见解析;(2)众数是1.5小时,中位数是1.5小时;(3)1.32小时.【分析】(1)根据观赛时间为1小时的人数和所占的百分比可以求得本次调查的人数,从而可以得到观赛时间为1.5小时的人数,进而可以将条形统计图补充完整;
(2)根据(1)中条形统计图中的数据可以得到抽查的市民观赛时间的众数、中位数;
(3)根据条形统计图中的数据可以计算出所有被调查市民的平均观赛时间.【详解】(1)本次调查的人数为:30÷30%=100,观赛时间为1.5小时的有:100﹣12﹣30﹣18=40(人),补全的条形统计图如右图所示;(2)由(1)中的条形统计图可知,抽查的市民观赛时间的众数、中位数分别是1.5小时、1.5小时;(3)1.32(小时),答:所有被调查市民的平均观赛时间是1.32小时.【点睛】本题考查条形统计图、扇形统计图等知识.结合生活实际,绘制条形统计图,扇形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图,并作简单的计算,一般难度不大.弄清题意是解本题的关键.23、()容器的原有水;()一天滴水量为.【解析】试题分析:(1)由图象可知,当t=0时,w=0.3,即容器内原有水0.3升;(2)设w与t之间的函数关系式为w=kt+b,将(0,0.3),(1.5,0.9)代入,即可求出w与t之间的函数关系式;由解析式可知,每小时滴水量为0.4L,一天的滴水量为:0.4×24=9.6L.试题解析:(1)根据图象可知,t=0时,w=0.3,即容器内原有水0.3升;(2)设w与t之间的函数关系式为w=kt+b,将(0,0.3),(1.5,0.9)代入,得:,解得:,故w与t之间的函数关系式为w=0.4t+0.3;由解析式可知,每小时滴水量为0.4L,一天的滴水量为:0.4×24=9.6L,即在这种滴水状态下一天的滴水量是9.6升.考点:一次函数的应用.24、DF=1.【分析】根据角平分线性质得出DE=DF,根据三角形的面积公式求出DE的长,即可得出DF的长度.【详解】解:∵BD平分∠ABC交AC于点D,DE⊥AB,DF⊥BC,
∴DE=DF,
∵S△ABD=12,AB=6,,∴DE=1.
∴DF=1.【点睛】本题考查了角平分线定义的应用,能根据角平分线性质得出DE=DF是解此题的关键.25、(1)25,115,小;(2)当DC=2时,△ABD≌△DCE;理由见解析;(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.【分析】(1)首先利用三角形内角和为180°可算出∠BAD=180°﹣40°﹣115°=25°;再利用邻补角的性质和三角形内角和定理可得∠DEC的度数;(2)当DC=2时,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.(3)分类讨论:由(2)可知∠ADB=∠DEC,所以∠AED与∠ADE不可能相等,于是可考虑∠DAE=∠AED和∠DAE=∠ADE两种情况.【详解】解:(1)∵∠B=40°,∠ADB=115°,AB=AC,∴∠BAD=180°﹣40°﹣115°=25°,∠C=∠B=40°;∵∠ADE=40°,∠ADB=115°,∴∠EDC=180°﹣∠ADB﹣∠ADE=180°﹣115°﹣40°=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 阅读情况调查报告范文十五篇
- 心理健康教育培训心得体会2篇
- 新教材高考地理二轮复习三10个长效热点综合专项训练热点5工业与服务业含答案
- 陕西省咸阳市渭城区第二初级中学2024-2025学年九年级上学期期中考试物理试卷
- 辽宁省沈阳市五校协作体2024-2025学年高二上学期11月期中考试语文试题(含答案)
- 江苏省高邮市2024-2025学年高三第一学期10月学情调研测试语文试题(解析版)
- 广东省韶关市翁源县2024-2025学年七年级上学期期中生物试题(含答案)
- 2024-2025学年陕西省西安市长安区五年级(上)月考语文试卷(有答案)
- 重庆市高考语文五年试题汇编-名篇名句默写
- 2024年哈尔滨辅警劳动合同
- 员工积分制管理实施方案细则
- 2024 CSCO指南-淋巴瘤诊疗指南要点解读
- 【马林巴独奏曲雨之舞的演奏技巧和情感处理探析5000字(论文)】
- YBT 189-2014 连铸保护渣水分含量(110℃)测定试验方法
- Module 3 Things we do Unit 7 Helping others Period 3 The story The bee and the ant(教学设计)-2023-2024学年牛津上海版(三起)英语六年级下册
- GB/T 5270-2024金属基体上的金属覆盖层电沉积和化学沉积层附着强度试验方法评述
- 供货保证措施以及应急保障措施
- 2024年广西高考物理试卷试题真题解读及答案详解
- 江苏省扬州市梅岭中学2023-2024学年七年级新生入学问卷调查英语试题
- 电力工程施工行业分析报告
- 2023年七年级地理上册期末测试卷(附答案)
评论
0/150
提交评论