2025届湖南省娄底市双峰县数学八上期末学业水平测试试题含解析_第1页
2025届湖南省娄底市双峰县数学八上期末学业水平测试试题含解析_第2页
2025届湖南省娄底市双峰县数学八上期末学业水平测试试题含解析_第3页
2025届湖南省娄底市双峰县数学八上期末学业水平测试试题含解析_第4页
2025届湖南省娄底市双峰县数学八上期末学业水平测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南省娄底市双峰县数学八上期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,在四个“米”字格的正方形涂上阴影,其中是轴对称图形的是()A. B. C. D.2.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=1.其中正确的是()A.①②③ B.仅有①② C.仅有①③ D.仅有②③3.小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程120千米,线路二全程150千米,汽车在线路二上行驶的平均时速是线路一上车速的2倍,线路二的用时预计比线路一用时少小时,如果设汽车在线路一上行驶的平均速度为千米/时,则下面所列方程正确的是()A. B.C. D.4.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是(

)A.两点之间,线段最短 B.垂线段最短C.三角形具有稳定性 D.两直线平行,内错角相等5.如图,已知,在的平分线上有一点,将一个60°角的顶点与点重合,它的两条边分别与直线,相交于点,.下列结论:(1);(2);(3);(4),,则;其中正确的有().A.1个 B.2个 C.3个 D.4个6.如图,在△ABC中,∠B=90º,AC=10,AD为此三角形的一条角平分线,若BD=3,则三角形ADC的面积为()A.3 B.10 C.12 D.157.每天用微信计步是不少市民的习惯,小张老师记录了一周每天的步数并制作成折线统计图,则小张老师这一周一天的步数超过7000步的有()A.1天 B.2天 C.3天 D.4天8.点P(2,-3)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如图,正方形的边长为4,点是的中点,点从点出发,沿移动至终点,设点经过的路径长为,的面积为,则下列图象能大致反映与函数关系的是()A. B. C. D.10.如图,在中,点是边上一点,,过点作交于,若是等腰三角形,则下列判断中正确的是()A. B. C. D.11.已知点,都在直线上,则、大小关系是()A. B. C. D.不能比较12.下列各点中,位于第二象限的是()A.(4,3) B.(﹣3,5) C.(3,﹣4) D.(﹣4,﹣3)二、填空题(每题4分,共24分)13.已知:,,则__________.14.计算:-=________.15.若的平方根是±3,则__________.16.若,,为正整数,则___________.17.平面直角坐标系中,点(3,-2)关于x轴对称的点的坐标是__________.18.用四舍五入法将2.0259精确到0.01的近似值为_____.三、解答题(共78分)19.(8分)如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=1,BD=2,求CD的长.20.(8分)已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.求证:AD=AE.21.(8分)五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?22.(10分)已知在一个多边形中,除去一个内角外,其余内角和的度数是1125°,求这个多边形的边数.23.(10分)如图,点在上,,.求证:.24.(10分)如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD.(1)求证:OP=OF;(2)求AP的长.25.(12分)已知,求,的值.26.现有3张边长为的正方形纸片(类),5张边长为的矩形纸片(类),5张边长为的正方形纸片(类).我们知道:多项式乘法的结果可以利用图形的面积表示.例如:就能用图①或图②的面积表示.(1)请你写出图③所表示的一个等式:_______________;(2)如果要拼一个长为,宽为的长方形,则需要类纸片_____张,需要类纸片_____张,需要类纸片_____张;(3)从这13张纸片中取出若干张,每类纸片至少取出一张,把取出的这些纸片拼成一个正方形(按原纸张进行无缝隙,无重叠拼接),则拼成的正方形的边长最长可以是_______(用含的式子表示).

参考答案一、选择题(每题4分,共48分)1、D【分析】根据轴对称图形的定义,逐一判断选项,即可得到答案.【详解】A是中心对称图形,不是轴对称图形,B不是轴对称图形,C是中心对称图形,不是轴对称图形,D是轴对称图形,故选D.【点睛】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.2、A【详解】解:∵乙出发时甲行了2秒,相距8m,∴甲的速度为8/2=4m/s.∵100秒时乙开始休息.∴乙的速度是500/100=5m/s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正确.∵100秒时乙到达终点,甲走了4×(100+2)=408m,∴b=500-408=92m.因此②正确.∵甲走到终点一共需耗时500/4=125s,,∴c=125-2=1s.因此③正确.终上所述,①②③结论皆正确.故选A.3、A【分析】根据题意可得在线路二上行驶的平均速度为2xkm/h,根据线路二的用时预计比线路一用时少小时,列方程即可.【详解】解:设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为2xkm/h,由题意得:故选:A.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是,读懂题意,设出未知数,找出合适的等量关系,列出方程.4、C【解析】试题分析:三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.解:这样做的道理是三角形具有稳定性.故选C.5、A【分析】过点作于点,于点,根据的平分线上有一点,得,,从而得,,;当,在射线,上时,通过证明,得;当,在直线,射线上时,通过,得;当,在直线、上时,得,即可完成求解.【详解】过点作于点,于点∵平分又∵∴,,∴∴,,①当,在射线,上时∴∵,∴∴,∴.②如图,当,在直线,射线上时∴;③如图,当,在直线、上时∴综上:②③④错误;故选:A.【点睛】本题考查了角平分线、全等三角形、直角三角形两锐角互余的知识;解题的关键是熟练掌握角平分线、全等三角形的性质,从而完成求解.6、D【分析】过D作DE⊥AC于E,根据角平分线性质得出BD=DE=3,再利用三角形的面积公式计算即可.【详解】解:过D作DE⊥AC于E.

∵AD是∠BAC的角平分线,∠B=90°(DB⊥AB),DE⊥AC,

∴BD=DE,

∵BD=3,

∴DE=3,

∴S△ADC=•AC•DE=×10×3=15

故选D.【点睛】本题考查了角平分线的性质,注意:角平分线上的点到角两边的距离相等.7、B【分析】根据折线统计图进行统计即可.【详解】根据统计图可得:小张老师这一周一天的步数超过7000步的有:星期一,星期六,共2天.故选:B【点睛】本题考查的是折线统计图,能从统计图中正确的读出信息是关键.8、D【解析】析:应先判断出所求的点的横纵坐标的符号,进而判断点P所在的象限.解答:解:∵点P的横坐标为正,纵坐标为负,∴点P(2,-3)所在象限为第四象限.故选D.9、C【分析】结合题意分情况讨论:①当点P在AE上时,②当点P在AD上时,③当点P在DC上时,根据三角形面积公式即可得出每段的y与x的函数表达式.【详解】①当点在上时,∵正方形边长为4,为中点,∴,∵点经过的路径长为,∴,∴,②当点在上时,∵正方形边长为4,为中点,∴,∵点经过的路径长为,∴,,∴,,,,③当点在上时,∵正方形边长为4,为中点,∴,∵点经过的路径长为,∴,,∴,综上所述:与的函数表达式为:.故答案为C.【点睛】本题考查动点问题的函数图象,解决动点问题的函数图象问题关键是发现y随x的变化而变化的趋势.10、B【解析】根据等腰三角形的性质得到根据垂直的性质得到根据等量代换得到又即可得到根据同角的余角相等即可得到.【详解】,,从而是等腰三角形,,故选:B.【点睛】考查等腰三角形的性质,垂直的性质,三角形的内角和定理,掌握同角的余角相等是解题的关键.11、A【分析】先根据一次函数的解析式判断出函数的增减性,再根据-4<1即可得出结论.【详解】解:∵一次函数中,k=-1<0,

∴y随x的增大而减小,

∵-4<1,

∴y1>y1.

故选:A.【点睛】本题考查一次函数的性质,对于一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小;熟练掌握一次函数的性质是解题关键.12、B【分析】依据位于第二象限的点的横坐标为负,纵坐标为正,即可得到结论.【详解】解:∵位于第二象限的点的横坐标为负,纵坐标为正,∴位于第二象限的是(﹣3,5)故选:B.【点睛】此题考查点的坐标,解题关键在于掌握坐标的特征.二、填空题(每题4分,共24分)13、【分析】将转化为,再把转化为,则问题可解【详解】解:∵【点睛】本题考查了同底数幂的除法和幂的乘方的逆运算,解答关键是将不同底数的幂运算转化成同底数幂进行计算.14、1【解析】根据算术平方根和立方根定义,分别求出各项的值,再相加即可.【详解】解:因为,所以.故答案为1.【点睛】本题考核知识点:算术平方根和立方根.解题关键点:熟记算术平方根和立方根定义,仔细求出算术平方根和立方根.15、1【分析】根据平方根的定义先得到(±3)2=2a-1,解方程即可求出a.【详解】解:∵2a-1的平方根为±3,

∴(±3)2=2a-1,

解得a=1.

故答案为:1.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.16、1【分析】根据同底数幂的乘法及幂的乘方的逆运算即可解答.【详解】解:∵,∴,故答案为:1.【点睛】本题考查了同底数幂的乘法及幂的乘方的逆运算,解题的关键是熟练掌握同底数幂的乘法及幂的乘方的逆运算.17、(3,2)【分析】关于x轴对称的点的坐标特征:横坐标不变,纵坐标互为相反数.【详解】解:点(3,-2)关于x轴对称的点的坐标是故答案为:18、2.1【分析】把千分位上的数字5进行四舍五入即可.【详解】解:2.0259精确到0.01的近似值为2.1.故答案为:2.1.【点睛】本题考查的知识点是近似数与有效数字,近似数精确到哪一位,就看它的后面一位,进行四舍五入计算即可.三、解答题(共78分)19、(1)证明见解析;(2)CD的长为.【分析】(1)因为∠AOB=∠COD=90°,由等量代换可得∠DOB=∠AOC,又因为△AOB和△COD均为等腰直角三角形,所以OC=OD,OA=OB,则△AOC≌△BOD;

(2)由(1)可知△AOC≌△BOD,所以AC=BD=2,∠CAO=∠DBO=45°,由等量代换求得∠CAB=90°,则.【详解】(1)证明:∵∠DOB=90°-∠AOD,∠AOC=90°-∠AOD,

∴∠BOD=∠AOC,

又∵OC=OD,OA=OB,

在△AOC和△BOD中,

∴△AOC≌△BOD(SAS);

(2)解:∵△AOC≌△BOD,

∴AC=BD=2,∠CAO=∠DBO=45°,

∴∠CAB=∠CAO+∠BAO=90°,

∴20、见解析【解析】试题分析:证明简单的线段相等,可证线段所在的三角形全等,结合本题,证△ADB≌△AEB即可.试题解析:∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠ADB=90°.∵AE⊥EB,∴∠E=∠ADB=90°.∵AB平分∠DAE,∴∠BAD=∠BAE.在△ADB和△AEB中,∠E=∠ADB,∠BAD=∠BAE,AB=AB,∴△ADB≌△AEB(AAS),∴AD=AE.21、(1)甲、乙两种救灾物品每件的价格各是70元、1元;(2)需筹集资金125000元.【分析】(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据“用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同”列出方程,求解即可;(2)设甲种物品件数为m件,则乙种物品件数为3m件,根据”该爱心组织按照此需求的比例购买这2000件物品”列出方程,求解即可.【详解】(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据题意得,,解得:x=1.经检验,x=1是原方程的解.答:甲、乙两种救灾物品每件的价格各是70元、1元;(2)设甲种物品件数为m件,则乙种物品件数为3m件,根据题意得,m+3m=2000,解得m=500,即甲种物品件数为500件,则乙种物品件数为1500件,此时需筹集资金:70×500+1×1500=125000(元).答:若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金125000元.22、9【分析】根据多边形的内角和公式列出关于边数的方程,再由减去的内角的范围结合不等式来分析即可得出结果.【详解】设这个多边形的边数为,这个内角为,根据题意,

得,

由,解得:.则该多边形边数是.【点睛】本体考查多边形的内角和及运用不等式求解,熟记多边形的内角和公式是解题关键.23、见解析【分析】由BF=DC得出BC=DF,由得出∠B=∠D,结合∠A=∠E即可证出.【详解】解:证明:∵BF=DC,即BC+CF=DF+FC,∴BC=DF,∵AB∥DE,∴∠B=∠D,在△ABC和△EDF中,,∴△ABC≌△EDF(AAS).【点睛】本题考查了全等三角形的判定,平行线的性质等知识点,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等,两直线平行,内错角相等.24、(1)证明见解析;(2)4.1.【分析】(1)由折叠的性质得出∠E=∠A=90°,从而得到∠D=∠E=90°,然后可证明△ODP≌△OEF,从而得到OP=OF;(2)由△ODP≌△OEF,得出OP=OF,PD=FE,从而得到DF=PE,设AP=EP=DF=x,则PD=EF=6-x,DF=x,求出CF、BF,根据勾股定理得出方程,解方程即可.【详解】(1)∵四边形ABCD是矩形,∴∠D=∠A=∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论