2025届湖北省武汉市蔡甸区誉恒联盟数学八上期末质量检测模拟试题含解析_第1页
2025届湖北省武汉市蔡甸区誉恒联盟数学八上期末质量检测模拟试题含解析_第2页
2025届湖北省武汉市蔡甸区誉恒联盟数学八上期末质量检测模拟试题含解析_第3页
2025届湖北省武汉市蔡甸区誉恒联盟数学八上期末质量检测模拟试题含解析_第4页
2025届湖北省武汉市蔡甸区誉恒联盟数学八上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖北省武汉市蔡甸区誉恒联盟数学八上期末质量检测模拟试题拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.将两块完全相同的长方体木块先按图1的方式放置,再按图2的方式放置,测得的数据如图(单位:)所示.则桌子的高度图1图2A. B. C. D.2.如图,在平面直角坐标系中,将绕点逆时针旋转后,点对应点的坐标为()A. B. C. D.3.已知一次函数y=mx+n﹣2的图象如图所示,则m、n的取值范围是()A.m>0,n<2 B.m>0,n>2 C.m<0,n<2 D.m<0,n>24.下列计算中,正确的是()A.x3•x2=x4 B.x(x-2)=-2x+x2C.(x+y)(x-y)=x2+y2 D.3x3y2÷xy2=3x45.已知(m-n)2=8,(m+n)2=2,则m2+n2=()A.10 B.6 C.5 D.36.小明同学把自己的一副三角板(两个直角三角形)按如图所示的位置将相等的边叠放在一起,则α的度数()A.135° B.120° C.105° D.75°7.下列式子是分式的是()A. B. C.+y D.8.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为()A.35° B.45° C.55° D.60°9.以下列各组数为边长,能构成直角三角形的是()A.2,3,4 B.3,4,6 C.5,12,13 D.6,7,1110.“Iamagoodstudent.”这句话中,字母“a”出现的频率是()A.2 B. C. D.11.下列四个手机APP图标中,是轴对称图形的是()A. B. C. D.12.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等 B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC二、填空题(每题4分,共24分)13.当________时,分式无意义.14.如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为______.15.在中,,,,则________.16.如图,在中,,点在内,平分,连结,把沿折叠,落在处,交于,恰有.若,,则__________.17.如图,AD是等边△ABC的中线,E是AC上一点,且AD=AE,则∠EDC=°18.已知等腰三角形一个外角的度数为,则顶角度数为____________.三、解答题(共78分)19.(8分)在中,,,、分别是的高和角平分线.求的度数.20.(8分)如图1,△ABC是等边三角形,点D是AC边上动点,∠CBD=α,把△ABD沿BD对折,A对应点为A'.(1)①当α=15°时,∠CBA'=;②用α表示∠CBA'为.(2)如图2,点P在BD延长线上,且∠1=∠2=α.①当0°<α<60°时,试探究AP,BP,CP之间是否存在一定数量关系,猜想并说明理由.②BP=8,CP=n,则CA'=.(用含n的式子表示)21.(8分)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,判断▱ADEF的形状;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.22.(10分)综合与实践阅读以下材料:定义:两边分别相等且夹角互补的两个三角形叫做“互补三角形”.用符号语言表示为:如图①,在△ABC与△DEF中,如果AC=DE,∠C+∠E=180°,BC=EF,那么△ABC与△DEF是互补三角形.反之,“如果△ABC与△DEF是互补三角形,那么有AC=DE,∠C+∠E=180°,BC=EF”也是成立的.自主探究利用上面所学知识以及全等三角形的相关知识解决问题:(1)性质:互补三角形的面积相等如图②,已知△ABC与△DEF是互补三角形.求证:△ABC与△DEF的面积相等.证明:分别作△ABC与△DEF的边BC,EF上的高线,则∠AGC=∠DHE=90°.……(将剩余证明过程补充完整)(2)互补三角形一定不全等,请你判断该说法是否正确,并说明理由,如果不正确,请举出一个反例,画出示意图.23.(10分)某校初二数学兴趣小组活动时,碰到这样一道题:“已知正方形,点分别在边上,若,则”.经过思考,大家给出了以下两个方案:(甲)过点作交于点,过点作交于点;(乙)过点作交于点,作交的延长线于点;同学们顺利地解决了该题后,大家琢磨着想改变问题的条件,作更多的探索.(1)对小杰遇到的问题,请在甲、乙两个方案中任选一个,加以证明(如图1);图1图2(2)如果把条件中的“”改为“与的夹角为”,并假设正方形的边长为l,的长为(如图2),试求的长度.24.(10分)先化简,再求值,其中a=1.25.(12分)老师在黑板上书写了一个代数式的正确计算结果,随后用字母A代替了原代数式的一部分,如下:(1)求代数式A,并将其化简;(2)原代数式的值能等于吗?请说明理由.26.问题情境:如图①,在直角三角形ABC中,∠BAC=90∘,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);(1)特例探究:如图②,∠MAN=90∘,射线AE在这个角的内部,点B.C在∠MAN的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;(2)归纳证明:如图③,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;(3)拓展应用:如图④,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E.F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为18,求△ACF与△BDE的面积之和是多少?

参考答案一、选择题(每题4分,共48分)1、C【分析】设小长方形的长为x,宽为y,根据题意可列出方程组,即可求解h.【详解】设小长方形的长为x,宽为y,由图可得解得h=40cm,故选C.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据图形列出方程组进行求解.2、D【分析】根据旋转变换只改变图形的位置不改变图形的形状和大小作出旋转后的图形,即可得出答案.【详解】如图,△ABC绕点A逆时针旋转90°后,B点对应点的坐标为(0,2),故答案选择D.【点睛】本题考查的是坐标与图形的变化——旋转,记住旋转只改变图形的位置不改变图形的形状和大小.3、D【解析】试题分析:∵一次函数y=mx+n-1的图象过二、四象限,∴m<0,∵函数图象与y轴交于正半轴,∴n-1>0,∴n>1.故选D.考点:一次函数图象与系数的关系.4、B【分析】根据同底数幂的乘法、整式的乘法和除法计算即可.【详解】解:A、x3•x2=x5,错误;B、x(x-2)=-2x+x2,正确;C、(x+y)(x-y)=x2-y2,错误;D、3x3y2÷xy2=3x2,错误;故选:B.【点睛】本题考查了同底数幂的乘法、单项式乘多项式、平方差公式和单项式的除法运算,熟练掌握运算法则是解答本题的关键.5、C【分析】根据完全平方公式可得,,再把两式相加即可求得结果.【详解】解:由题意得,把两式相加可得,则故选C.考点:完全平方公式点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.6、C【分析】根据三角形的一个外角等于和它不相邻的两个内角的和计算,得到答案.【详解】由题意得,∠A=60°,∠ABD=90°﹣45°=45°,∴α=45°+60°=105°,故选:C.【点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.7、D【分析】根据分式的定义:形如,A、B是整式,B中含有字母且B不等于0的式子叫做分式【详解】A.属于整式,不是分式;B.属于整式,不是分式;C.属于整式,不是分式;D.属于分式;故答案选D【点睛】本题主要考查了分式的概念,分式的分母必须含有字母,而分子可以含有字母,也可以不含字母.8、C【解析】试题分析:根据等腰三角形的三线合一的性质可直接得到AD平分∠BAC,AD⊥BC,因此∠DAC=∠BAD=35°,∠ADC=90°,从而可求得∠C=55°.故选C考点:等腰三角形三线合一9、C【分析】根据勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、22+32≠42,不能构成直角三角形,故选项错误;B、32+42≠62,不能构成直角三角形,故选项错误;C、52+122=132,能构成直角三角形,故选项正确;D、62+72≠112,不能构成直角三角形,故选项错误.故选C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断是解答此题的关键.10、B【解析】这句话中,15个字母a出现了2次,所以字母“a”出现的频率是.故选B.11、B【分析】根据轴对称定义进行判断即可.【详解】解:根据轴对称图形的定义:把一个图形沿某一条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫作轴对称图形.由此定义可知,B满足定义条件.故本题正确答案为B.【点睛】本题主要考查轴对称图形的定义:把一个图形沿某一条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫作轴对称图形.12、C【分析】通过全等三角形的性质进行逐一判断即可.【详解】A、∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项错误;B、∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项错误;C、∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB,∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项正确;D、∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD,∴AD∥BC,故本选项错误;故选:C.【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.二、填空题(每题4分,共24分)13、=1【解析】分式的分母等于0时,分式无意义.【详解】解:当即时,分式无意义.故答案为:【点睛】本题考查了分式无意义的条件,理解分式有意义无意义的条件是解题的关键.14、1【解析】本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC-60°=∠C-60°,最后根据三角形内角和定理得出关系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到结论.【详解】∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案为:1.【点睛】本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.15、【分析】根据勾股定理直接求出AB长即可.【详解】∵∠C=90°,BC=1,AC=2,∴AB=,故答案为:.【点睛】本题是对勾股定理的考查,熟练掌握勾股定理是解决本题的关键.16、【解析】如图(见解析),延长AD,交BC于点G,先根据等腰三角形的三线合一性得出,再根据折叠的性质、等腰三角形的性质(等边对等角)得出,从而得出是等腰直角三角形,然后根据勾股定理、面积公式可求出AC、CE、CF的长,最后根据线段的和差即可得.【详解】如图,延长AD,交BC于点G平分,,且AG是BC边上的中线由折叠的性质得,即,即是等腰直角三角形,且在中,由三角形的面积公式得即,解得故答案为:.【点睛】本题是一道较难的综合题,考查了等腰三角形的判定与性质、勾股定理等知识点,通过作辅助线,构造一个等腰直角三角形是解题关键.17、15【解析】解:∵AD是等边△ABC的中线,,,,,,18、或【分析】等腰三角形的一个外角等于,则等腰三角形的一个内角为72°,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.【详解】∵一个外角为,∴三角形的一个内角为72°,当72°为顶角时,其他两角都为、,当72°为底角时,其他两角为72°、36°,所以等腰三角形的顶角为或.故答案为:或【点睛】本题考查了等腰三角形的性质,及三角形内角和定理;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.三、解答题(共78分)19、∠DAE=20°【分析】先根据三角形的内角和定理得到∠BAC的度数,再利用角平分线的定义求出∠BAE=∠BAC,而∠BAD=90°-∠B,然后利用∠DAE=∠BAE-∠BAD进行计算即可.【详解】解:在△ABC中,∠B=80°,∠C=40°

∴∠BAC=180°-∠B-∠C=180°-80°-40°=60°

∵AE是的角平分线

∴∠BAE=∠BAC=30°,

∵AD是△ABC的高,

∴∠ADB=90°

∴在△ADB中,∠BAD=90°-∠B=90°-80°=10°

∴∠DAE=∠BAE-∠BAD=30°-10°=20°.【点睛】本题考查三角形内角和定理,角平分线的定义,三角形的高线.熟练掌握相关定义,计算出角的度数是解题关键.20、(1)①30°;②60°﹣2α;(2)①BP=AP+CP,理由见解析;②8﹣2n【分析】(1)先求出∠ABC=60°,得出∠ABD=60°﹣α,再由折叠得出∠A'BD=60°﹣α,即可得出结论;(2)①先判断出△BP'C≌△APC,得出CP'=CP,∠BCP'=∠ACP,再判断出△CPP'是等边三角形,得出PP'=CP;②先求出∠BCP=120°﹣α,再求出∠BCA'=60°+α,判断出点A',C,P在同一条直线上,即:PA'=PC+CA',再判断出△ADP≌△A'DP(SAS),得出A'P=AP,即可得出结论.【详解】解:(1)∵△ABC是等边三角形,∴∠ABC=60°,∵∠CBD=α,∴∠ABD=∠ABC﹣∠CBD=60°﹣α,由折叠知,∠A'BD=∠ABD=60°﹣α,∴∠CBA'=∠A'BD﹣∠CBD=60°﹣α﹣α=60°﹣2α,①当α=15°时,∠CBA'=60°﹣2α=30°,故答案为30°;②用α表示∠CBA'为60°﹣2α,故答案为60°﹣2α;(2)①BP=AP+CP,理由:如图2,连接CP,在BP上取一点P',使BP'=AP,∵△ABC是等边三角形,∴∠ACB=60°,BC=AC,∵∠1=∠2=α,∴△BP'C≌△APC(SAS),∴CP'=CP,∠BCP'=∠ACP,∴∠PCP'=∠ACP+∠ACP'=∠BCP'+∠ACP'=∠ACB=60°,∵CP'=CP,∴△CPP'是等边三角形,∴∠CPB=60°,PP'=CP,∴BP=BP'+PP'=AP+CP;②如图3,由①知,∠BPC=60°,∴∠BCP=180°﹣∠BPC﹣∠PBC=180°﹣60°﹣α=120°﹣α,由(1)知,∠CBA'=60°﹣2α,由折叠知,BA=BA',∵BA=BC,∴BA'=BC,∴∠BCA'=(180°﹣∠CBA')=[180°﹣(60°﹣2α)]=60°+α,∴∠BCP+∠BCA'=120°﹣α+60°+α=180°,∴点A',C,P在同一条直线上,即:PA'=PC+CA',由折叠知,BA=BA',∠ADB=∠A'DB,∴180°﹣∠ADB=180°﹣∠A'DB,∴∠ADP=∠A'DP,∵DP=DP,∴△ADP≌△A'DP(SAS),∴A'P=AP,由①知,BP=AP+CP,∵BP=8,CP=n,∴AP=BP﹣CP=8﹣n,∴A'P=8﹣n,∴CA'=A'P﹣CP=8﹣n﹣n=8﹣2n,故答案为:8﹣2n.【点睛】此题是几何变换综合题,主要考查了折叠的性质,全等三角形的判定和性质,等边三角形的判定和性质,构造出全等三角形是解本题的关键.21、(1)证明见解析;(2)▱ADEF的形状为菱形,理由见解析;(3)四边形AEGF是矩形,理由见解析.【解析】(1)根据平行线的性质得到∠BDE=∠A,根据题意得到∠DEF=∠BDE,根据平行线的判定定理得到AD∥EF,根据平行四边形的判定定理证明;(2)根据三角形中位线定理得到DE=AC,得到AD=DE,根据菱形的判定定理证明;(3)根据等腰三角形的性质得到AE⊥EG,根据有一个角是直角的平行四边形是矩形证明.【详解】(1)证明:∵DE∥AC,∴∠BDE=∠A,∵∠DEF=∠A,∴∠DEF=∠BDE,∴AD∥EF,又∵DE∥AC,∴四边形ADEF为平行四边形;(2)解:□ADEF的形状为菱形,理由如下:∵点D为AB中点,∴AD=AB,∵DE∥AC,点D为AB中点,∴DE=AC,∵AB=AC,∴AD=DE,∴平行四边形ADEF为菱形,(3)四边形AEGF是矩形,理由如下:由(1)得,四边形ADEF为平行四边形,∴AF∥DE,AF=DE,∵EG=DE,∴AF∥DE,AF=GE,∴四边形AEGF是平行四边形,∵AD=AG,EG=DE,∴AE⊥EG,∴四边形AEGF是矩形.故答案为:(1)证明见解析;(2)菱形;(3)矩形.【点睛】本题考查的是平行四边形、矩形、菱形的判定,掌握它们的判定定理是解题的关键.22、(1)见解析;(2)不正确,理由见解析【分析】(1)已知△ABC与△DEF是互补三角形,可得∠ACB+∠E=180°,AC=DE,BC=EF,证得∠ACG=∠E,证明△AGC≌△DHE,得到AG=DH,所以,即△ABC与△DEF的面积相等.(2)不正确.先画出反例图,证明△ABC≌△DEF,△ABC与△DEF是互补三角形.互补三角形一定不全等的说法错误.【详解】(1)∵△ABC与△DEF是互补三角形,∴∠ACB+∠E=180°,AC=DE,BC=EF.又∵∠ACB+∠ACG=180°,∴∠ACG=∠E,在△AGC与△DHE中,∴△AGC≌△DHE(AAS)∴AG=DH.∴即△ABC与△DEF的面积相等.(2)不正确.反例如解图,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴△ABC与△DEF是互补三角形.∴互补三角形一定不全等的说法错误.【点睛】本题考查了全等三角形的判定及性质定理,利用AAS和SAS证明三角形全等,已知两个三角形全等,可得到对应边相等.23、(1)见解析;(2).【分析】(1)选乙,过点作交于点,作交的延长线于点,通过证△AMB≌△ADN来得出结论;(2)按(1)的思路也要通过构建全等三角形来求解,可过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N,将△AND绕点A旋转到△APB,不难得出△APM和△ANM全等,那么可得出PM=MN,而MB的长可在直角三角形ABM中根据AB和AM(即HF的长)求出.如果设DN=x,那么NM=PM=BM+x,MC=BC−BM=1−BM,因此可在直角三角形MNC中用勾股定理求出DN的长,进而可在直角三角形AND中求出AN即EG的长.【详解】(1)证明:过点作交于点,作交的延长线于点∴,,∵正方形∴,,∵∴∴在和中,∴∴即.(2)解:过点作交于点,过点作交于点,∵,,∴在中,,将绕点旋转到,∵与的夹角为∴∴,即从而∴设,则,,在中,,解得:∴.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质、图形的旋转变换等知识.通过辅助线或图形的旋转将所求的线段与已知的线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论