2025届江西抚州市临川区数学八年级第一学期期末达标检测试题含解析_第1页
2025届江西抚州市临川区数学八年级第一学期期末达标检测试题含解析_第2页
2025届江西抚州市临川区数学八年级第一学期期末达标检测试题含解析_第3页
2025届江西抚州市临川区数学八年级第一学期期末达标检测试题含解析_第4页
2025届江西抚州市临川区数学八年级第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江西抚州市临川区数学八年级第一学期期末达标检测试题题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.在平面直角坐标系中,点P(﹣3,7)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列运算中,不正确的是()A. B. C. D.3.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.1.其中说法正确的有()A.4个 B.3个 C.2个 D.1个4.下列图形中,对称轴最多的图形是()A. B. C. D.5.下列各组数,可以作为直角三角形的三边长的是()A.2,3,4 B.3,4,6 C.4,5,6 D.6,8,106.若把分式的x和y都扩大5倍,则分式的值()A.扩大到原来的5倍 B.不变C.缩小为原来的倍 D.扩大到原来的25倍7.下列计算正确的是()A.a2•a3=a5 B.(a3)2=a5 C.(3a)2=6a2 D.8.在直线L上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+2S2+2S3+S4=(

)A.5 B.4 C.6 D.109.在,,,,中,无理数的个数是()A.个 B.个 C.个 D.个10.如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为边并且在AB的同一侧作等边△ACD和等边△BCE,连接AE交CD于M,连接BD交CE于N.给出以下三个结论:①AE=BD;②CN=CM;③MN∥AB;④∠CDB=∠NBE.其中正确结论的个数是()A.4 B.3 C.2 D.111.若x2+mxy+4y2是一个完全平方式,那么m的值是()A.±4 B.﹣2 C.±2 D.412.下列各式:(1﹣x),,,,其中分式共有()A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共24分)13.9的平方根是________;的立方根是__________.14.八年级数学教师邱龙从家里出发,驾车去离家的风景区度假,出发一小时内按原计划的速度匀速行驶,一小时后以原速的1.5倍匀速行驶,并提前40分钟到达风景区;第二天返回时以去时原计划速度的1.2倍行驶回到家里.那么来回行驶时间相差_________分钟.15.如图,在△ABC中,∠A=70°,点O到AB,BC,AC的距离相等,连接BO,CO,则∠BOC=________.16.如图,矩形在平面直角坐标系内,其中点,点,点和点分别位于线段,上,将沿对折,恰好能使点与点重合.若轴上有一点,能使为等腰三角形,则点的坐标为___________.17.将数字1657900精确到万位且用科学记数法表示的结果为__________.18.如图,在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,与y轴交于点B,点P在线段AB上,PC⊥x轴于点C,则△PCO周长的最小值为_____三、解答题(共78分)19.(8分)如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从点O出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)求证:△CDE是等边三角形(下列图形中任选其一进行证明);(2)如图2,当点D在射线OM上运动时,是否存在以D,E,B为顶点的三角形是直角三角形?若存在,求出运动时间t的值;若不存在,请说明理由.20.(8分)在同一条道路上,甲车从地到地,乙车从地到地,乙先出发,图中的折线段表示甲、乙两车之间的距离(千米)与行驶时间(小时)的函数关系的图象,根据图象解决以下问题:(1)乙先出发的时间为小时,乙车的速度为千米/时;(2)求线段的函数关系式,并写出自变量的取值范围;(3)甲、乙两车谁先到终点,先到多少时间?21.(8分)如图,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图(1),若∠AOC=,求∠DOE的度数;(2)如图(2),将∠COD绕顶点O旋转,且保持射线OC在直线AB上方,在整个旋转过程中,当∠AOC的度数是多少时,∠COE=2∠DOB.22.(10分)某超市用元购进某种干果销售,由于销售状况良好,超市又调拨元资金购进该种干果,但这次的进价比第一次的进价提高了,购进干果数量是第一次的倍还多千克.该种干果的第一次进价是每千克多少元?如果超市将这种干果全部按每千克元的价格出售,售完这种干果共盈利多少元?23.(10分)已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.24.(10分)在社会主义新农村建设中,某乡镇决定对一段公路进行改造,已知这项工程由甲工程队单独做需要40天完成;如果由乙工程先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合作完成这项工程所需的天数.25.(12分)解分式方程:+=26.如图,直线分别与x轴,y轴相交于A,B两点,0为坐标原点,A点的坐标为(4,0)(1)求k的值;(2)过线段AB上一点P(不与端点重合)作x轴,y轴的垂线,乖足分别为M,N.当长方形PMON的周长是10时,求点P的坐标.

参考答案一、选择题(每题4分,共48分)1、B【解析】根据各象限内点的坐标特点解答即可.【详解】解:因为点P(﹣3,7)的横坐标是负数,纵坐标是正数,所以点P在平面直角坐标系的第二象限.故选:B.【点睛】此题主要考查了点的坐标,解答本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.2、D【分析】根据同底数幂乘法、单项式除以单项式、积的乘方、幂的乘方进行计算,然后分别进行判断,即可得到答案.【详解】解:A、,正确;B、,正确;C、,正确;D、,故D错误;故选:D.【点睛】本题考查了同底数幂乘法、单项式除以单项式、积的乘方、幂的乘方,解题的关键是熟练掌握所学的运算法则进行解题.3、B【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【详解】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选B.【点睛】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.4、A【分析】先根据轴对称图形的定义确定各选项图形的对称轴条数,然后比较即可选出对称轴条数最多的图形.【详解】解:A、圆有无数条对称轴;

B、正方形有4条对称轴;

C、该图形有3条对称轴;

D、长方形有2条对称轴;

故选:A.【点睛】本题考查了轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.5、D【解析】分别求出两小边的平方和和最长边的平方,看看是否相等即可.【详解】∵22+32≠42,∴以2,3,4为边的三角形不是直角三角形,故本选项不符合题意;B、∵32+42≠62,∴以3,4,6为边的三角形不是直角三角形,故本选项不符合题意;C、∵42+52≠62,∴以4,5,6为边的三角形不是直角三角形,故本选项不符合题意;D、∵62+82=102,∴以6,8,10为边的三角形是直角三角形,故本选项符合题意。故选D.【点睛】本题考查了勾股定理的逆定理,能够熟记勾股定理的逆定理的内容是解此题的关键.6、A【分析】把分式的x和y都扩大5倍,再进行约分,进而即可得到答案.【详解】∵把分式的x和y都扩大5倍,得,∴把分式的x和y都扩大5倍,则分式的值扩大到原来的5倍.故选A.【点睛】本题主要考查分式的基本性质,掌握分式的基本性质,进行约分,是解题的关键.7、A【解析】A、∵a2•a3=a5,故原题计算正确;B、∵(a3)2=a6,故原题计算错误;C、∵(3a)2=9a2,故原题计算错误;D、∵a2÷a8=a-6=故原题计算错误;故选A.8、C【分析】运用勾股定理可知,每两个相邻的正方形面积和都等于中间斜放的正方形面积,据此即可解答.【详解】观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S2+S1=2,S1+S4=1.则S1+2S2+2S1+S4=1+2+1=6,故选C.【点睛】本题考查了勾股定理、全等三角形的判定与性质,发现正放置的两个小正方形的面积和正好是它们之间斜放置的正方形的面积是解题的关键.9、B【分析】根据无理数的定义判断即可.【详解】解:,是无理数,=,可以化成分数,不是无理数.故选B【点睛】此题主要考查了无理数的定义,熟记带根号的开不尽方的是无理数,无限不循环的小数是无理数.10、A【分析】根据题目中的已知信息,判定出△ACE≌△DCB,即可证明①正确;判定△ACM≌△DCN,即可证明②正确;证明∠NMC=∠ACD,即可证明③正确;分别判断在△DCN和△BNE各个角度之间之间的关系,即可证明④正确.【详解】∵△ACD和△BCE是等边三角形∴∠ACD=∠BCE=60°,AC=DC,EC=BC∴∠ACD+∠DCE=∠DCE+∠ECB即∠ACE=∠DCB∴△ACE≌△DCB(SAS)∴AE=BD,故①正确;∴∠EAC=∠NDC∵∠ACD=∠BCE=60°∴∠DCE=60°∴∠ACD=∠MCN=60°∵AC=DC∴△ACM≌△DCN(ASA)∴CM=CN,故②正确;又∠MCN=180°-∠MCA-∠NCB=180°-60°-60°=60°∴△CMN是等边三角形∴∠NMC=∠ACD=60°∴MN∥AB,故③正确;在△DCN和△BNE,∠DNC+∠DCN+∠CDB=180°∠ENB+∠CEB+∠NBE=180°∵∠DNC=∠ENB,∠DCN=∠CEB∴∠CDB=∠NBE,故④正确.故选:A.【点睛】本题主要考查了根据已知条件判定三角形全等以及三角形的内角和,其中灵活运用等边三角形的性质是解题的关键,属于中等题.11、A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【详解】∵x2+mxy+1y2=x2+mxy+(2y)2,∴mxy=±2x×2y,解得:m=±1.故选:A.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键.12、A【解析】分式即形式,且分母中要有字母,且分母不能为0.【详解】本题中只有第五个式子为分式,所以答案选择A项.【点睛】本题考查了分式的概念,熟悉理解定义是解决本题的关键.二、填空题(每题4分,共24分)13、【分析】根据平方根和立方根的定义,即可得到答案.【详解】解:9的平方根是;的立方根是;故答案为:,.【点睛】本题考查了平方根的定义和立方根的定义,解题的关键是熟练掌握定义进行解题.14、1【分析】设从家到风景区原计划行驶速度为xkm/h,根据“实际时间=计划时间-”得出方程,求出原计划的行驶速度,进而计算出从家到风景区所用的时间以及回家所用的时间,即可得出结论.【详解】设从家到风景区原计划行驶速度为xkm/h,根据题意可得:1,解得:x=60,检验得:x=60是原方程的根.∴第一天所用的时间=(小时),第二天返回时所用时间=180÷(60×1.2)=2.5(小时),时间差=2.5-=(小时)=1(分钟).故答案为:1.【点睛】本题考查了分式方程的应用,正确得出方程是解答本题的关键.15、1°【分析】根据角平分线性质推出O为△ABC三角平分线的交点,根据三角形内角和定理求出∠ABC+∠ACB,根据角平分线定义求出∠OBC+∠OCB,即可求出答案.【详解】:∵点O到AB、BC、AC的距离相等,∴OB平分∠ABC,OC平分∠ACB,∴,,∵∠A=70°,∴∠ABC+∠ACB=180°-70°=110°,∴,∴∠BOC=180°-(∠OBC+∠OCB)=1°;故答案为:1.【点睛】本题主要考查平分线的性质,三角形内角和定理的应用,能求出∠OBC+∠OCB的度数是解此题的关键.16、或【分析】首先根据矩形和对折的性质得出AC、AB、BC、AD,然后利用△ADE∽△ABC,得出AE,分类讨论即可得出点P坐标.【详解】∵矩形,,∴OA=BC=2,OC=AB=4∴由对折的性质,得△ADE是直角三角形,AD=CD=AC=,∠ADE=∠ABC=90°,∠DAE=∠BAC∴△ADE∽△ABC∴,即∴∵轴上有一点,使为等腰三角形,当点P在点A左侧时,如图所示:∴∴点P坐标为;当点P在点A右侧时,如图所示:∴∴点P坐标为;综上,点P的坐标是或故答案为:或.【点睛】此题主要考查利用相似三角形、等腰三角形的性质求点坐标,解题关键是求出AE的长度.17、1.66×1【分析】用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,再对千位数的数字进行四舍五入即可.【详解】解:1657900=1.6579×1≈1.66×1.

故答案为:1.66×1.【点睛】本题考查了科学记数法表示较大的数的方法,准确确定a与n值是关键.18、【解析】先根据一次函数列出周长的式子,再根据垂线公理找到使周长最小时点P的位置,然后结合一次函数的性质、等腰直角三角形的性质求解即可.【详解】由题意,可设点P的坐标为周长为则求周长的最小值即为求OP的最小值如图,过点O作由垂线公理得,OP的最小值为OD,即此时点P与点D重合由直线的解析式得,,则是等腰直角三角形,是等腰直角三角形,解得则周长的最小值为故答案为:.【点睛】本题考查了一次函数的几何应用、等腰直角三角形的判定与性质、垂线公理等知识点,依据题意列出周长的式子,从而找到使其最小的点P位置是解题关键.三、解答题(共78分)19、(1)见解析;(2)存在,当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【分析】(1)由旋转的性质可得CD=CE,∠DCA=∠ECB,由等边三角形的判定可得结论;(2)分四种情况,由旋转的性质和直角三角形的性质可求解.【详解】(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)解:存在,①当0≤t<6s时,由旋转可知,,,若,由(1)可知,△CDE是等边三角形,∴,∴,∴,∵,∴,∵,∴,∴,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2s;②当6<t<10s时,由∠DBE=120°>90°,∴此时不存在;③t=10s时,点D与点B重合,∴此时不存在;④当t>10s时,由旋转的性质可知,∠CBE=60°又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4cm,∴OD=14cm,∴t=14÷1=14s;综上所述:当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【点睛】本题是三角形综合题,考查了全等三角形的性质,旋转的性质,等边三角形的性质,利用分类讨论思想解决问题是本题的关键.20、(1)0.5;60;(2);(3)乙;【分析】(1)根据第一段图象可以看出乙先出发0.5小时,然后利用路程÷时间=速度即可求出乙的速度;(2)先求出甲车的速度,进而求出甲乙两车的相遇时间,从而得到C的坐标,然后将B,C代入用待定系数法即可求值线段BC的解析式;(3)计算发现乙到达终点的时间为,而从图象中可知甲到达终点的时间为1.75小时,据此问题可解.【详解】(1)根据图象可知图象在点B处出现转折,所以前一段应该是乙提前出发的时间∴乙先出发0.5小时,在0.5小时内行驶了100-70=30千米∴乙的速度为(2)乙从地到地所需的时间为∴甲从地到地所需的时间为∴甲的速度为∴从甲车出发到甲乙两车相遇所需的时间为∵乙先出发0.5小时,∴甲乙两车相遇是在乙车出发后1小时∴设直线BC的解析式为将代入解析式中得解得∴直线BC的解析式为(3)乙从地到地所需的时间为,而甲是在乙出发1.75小时后到达终点的,所以乙先到终点所以乙比甲早到【点睛】本题主要考查一次函数的应用,掌握待定系数法和理解各个转折点的含义是解题的关键.21、(1)20°;(2)当∠AOC的度数是60°或108°时,∠COE=2∠DOB【分析】(1)依据邻补角的定义以及角平分线的定义,即可得到∠COE的度数,进而得出∠DOE的度数;(2)设∠AOC=α,则∠BOC=180°-α,依据OE平分∠BOC,可得∠COE=×(180°-α)=90°-α,再分两种情况,依据∠COE=2∠DOB,即可得到∠AOC的度数.【详解】(1)∵∠AOC=40°,∴∠BOC=140°,又∵OE平分∠BOC,∴∠COE=×140°=70°,∵∠COD=90°,∴∠DOE=90°-70°=20°;(2)设∠AOC=α,则∠BOC=180°-α,∵OE平分∠BOC,∴∠COE=×(180°-α)=90°-α,分两种情况:当OD在直线AB上方时,∠BOD=90°-α,∵∠COE=2∠DOB,∴90°-α=2(90°-α),解得α=60°.当OD在直线AB下方时,∠BOD=90°-(180°-α)=α-90°,∵∠COE=2∠DOB,∴90°-α=2(α-90°),解得α=108°.综上所述,当∠AOC的度数是60°或108°时,∠COE=2∠DOB.【点睛】本题考查角的计算以及角平分线的定义的运用,解决问题的关键是画出图形,运用分类思想进行求解.22、(1)该种干果的第一次进价是每千克5元;(2)售完这种干果共盈利6900元.【分析】(1)设该种干果的第一次进价是每千克元,则第二次进价是每千克元,根据第二次购进干果数量是第一次的倍还多千克列方程求出x的值即可;(2)根据销售总额-进货总额即可得答案.【详解】(1)设该种干果的第一次进价是每千克元,则第二次进价是每千克元∵第二次购进干果数量是第一次的倍还多千克,∴,解得,经检验是方程的解,答:该种干果的第一次进价是每千克元.(2)=18900-12000(元).答:超市销售这种干果共盈利元.【点睛】本题考查分式方程的应用,根据题意,正确得出等量关系是解题关键.23、(1)证明见解析;(2)BE=AF,证明见解析.【解析】分析:(1)连接AD,根据等腰三角形的性质可得出AD=BD、∠EBD=∠FAD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△BDE≌△ADF(ASA),再根据全等三角形的性质即可证出BE=AF;(2)连接AD,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD、BD=AD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△EDB≌△FDA(ASA),再根据全等三角形的性质即可得出BE=AF.详(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF;(2)B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论