版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江西省新余九中学数学八上期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,D,E分别在AB,AC上,,添加下列条件,无法判定的是()A. B. C. D.2.若把分式中的x和y都扩大10倍,那么分式的值()A.扩大10倍 B.不变 C.缩小10倍 D.缩小20倍3.下列多项式中,不能用平方差公式分解的是()A. B.C. D.4.已知实数a、b满足a+b=2,ab=,则a﹣b=()A.1 B.﹣ C.±1 D.±5.下图是北京世界园艺博览会园内部分场馆的分布示意图,在图中,分别以正东、正北方向为轴、轴的正方向建立平向直角坐标系,如果表示演艺中心的点的坐标为,表示水宁阁的点的坐标为,那么下列各场馆的坐标表示正确的是()A.中国馆的坐标为B.国际馆的坐标为C.生活体验馆的坐标为D.植物馆的坐标为6.如图,直线,点、在上,点在上,若、,则的大小为()A. B. C. D.7.如图,在中,线段AB的中垂线交AB于点D,交AC于点E,AC=14,的周长是24,则BC的长为()A.10 B.11 C.14 D.158.如图为一次函数和在同一坐标系中的图象,则的解中()A., B.,C., D.,9.若x<2,化简+|3-x|的正确结果是()A.-1 B.1 C.2x-5 D.5-2x10.下列说法中正确的是()A.带根号的数都是无理数 B.不带根号的数一定是有理数C.无限小数都是无理数 D.无理数一定是无限不循环小数二、填空题(每小题3分,共24分)11.若与点关于轴对称,则的值是___________;12.如图,在矩形ABCD中,AB=3,点E为边CD上一点,将△ADE沿AE所在直线翻折,得到△AFE,点F恰好是BC的中点,M为AF上一动点,作MN⊥AD于N,则BM+AN的最小值为____.13.如图,△ABC是等腰直角三角形,∠C=90°,BD平分∠CBA交AC于点D,DE⊥AB于E.若△ADE的周长为8cm,则AB=_____cm.14.在“童心向党,阳光下成长”的合唱比赛中,30个参赛队的成绩被分为5组,第1~4组的频数分别为2,10,7,8,则第5组的频率为________.15.8的立方根为_______.16.如图所示,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠EFC′=125°,那么∠AEB的度数是.17.如图,∠AOB=30°,C是BO上的一点,CO=4,点P为AO上的一动点,点D为CO上的一动点,则PC+PD的最小值为_____,当PC+PD的值取最小值时,则△OPC的面积为_____.18.三角形三个内角的度数之比是1:2:3,它的最大边长是6cm,则它最短边长为________.三、解答题(共66分)19.(10分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图1,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S1.则S1与S1的数量关系是.(1)猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长20.(6分)如图,一次函数的图象与轴交于点,与正比例函数的图象相交于点,且.(1)分别求出这两个函数的解析式;(2)求的面积;(3)点在轴上,且是等腰三角形,请直接写出点的坐标.21.(6分)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用6000元购进电冰箱的数量与用4800元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,现有两种进货方案①冰箱30台,空调70台;②冰箱50台,空调50台,那么该商店要获得最大利润应如何进货?22.(8分)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.23.(8分)如图,、分别是等边三角形的边、上的点,且,、交于点.(1)求证:;(2)求的度数.24.(8分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?25.(10分)如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE于F,连接DE,AE=5,BE=4,则DF=_____.26.(10分)如图,将一张边长为8的正方形纸片OABC放在直角坐标系中,使得OA与y轴重合,OC与x轴重合,点P为正方形AB边上的一点(不与点A、点B重合).将正方形纸片折叠,使点O落在P处,点C落在G处,PG交BC于H,折痕为EF.连接OP、OH.初步探究(1)当AP=4时①直接写出点E的坐标;②求直线EF的函数表达式.深入探究(2)当点P在边AB上移动时,∠APO与∠OPH的度数总是相等,请说明理由.拓展应用(3)当点P在边AB上移动时,△PBH的周长是否发生变化?并证明你的结论.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据三角形全等的判定定理,逐一判断选项,即可.【详解】∵,∠A=∠A,若添加,不能证明,∴A选项符合题意;若添加,根据AAS可证明,∴B选项不符合题意;若添加,根据AAS可证明,∴C选项不符合题意;若添加,根据ASA可证明,∴D选项不符合题意;故选A.【点睛】本题主要考查三角形全等的判定方法,理解AAA不能判定两个三角形全等,是解题的关键.2、B【分析】把x和y都扩大10倍,根据分式的性质进行计算,可得答案.【详解】解:分式中的x和y都扩大10倍可得:,∴分式的值不变,故选B.【点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变.3、D【分析】根据平方差公式a2-b2=(a+b)(a-b),分别判断得出即可.【详解】解:A、a2b2-1=(ab+1)(ab-1),可以用平方差公式分解因式,故此选项错误;B、4-0.25a2=(2-0.5a)(2+0.5a),可以用平方差公式分解因式,故此选项错误;C、-x2+1=(1+x)(1-x),可以用平方差公式分解因式,故此选项错误;D、不能用平方差公式分解因式,故此选项正确;故选D.【点睛】本题主要考查了公式法分解因式,熟练利用平方差公式是解题关键.4、C【解析】分析:利用完全平方公式解答即可.详解:∵a+b=2,ab=,∴(a+b)2=4=a2+2ab+b2,∴a2+b2=,∴(a-b)2=a2-2ab+b2=1,∴a-b=±1,故选C.点睛:本题考查了完全平方公式的运用,熟记公式结构是解题的关键.5、A【分析】根据演艺中心的点的坐标为(1,2),表示水宁阁的点的坐标为(-4,1)确定坐标原点的位置,建立平面直角坐标系,进而可确定其它点的坐标.【详解】解:根据题意可建立如下所示平面直角坐标系,A、中国馆的坐标为(-1,-2),故本选项正确;B、国际馆的坐标为(3,-1),故本选项错误;C、生活体验馆的坐标为(7,4),故本选项错误;D、植物馆的坐标为(-7,-4),故本选项错误.故选A.【点睛】此题考查坐标确定位置,解题的关键就是确定坐标原点和x,y轴的位置.6、B【分析】根据等边对等角的性质,可求得∠ACB的度数,又由直线l1∥l2,根据两直线平行,同旁内角互补即可求得∠1的度数.【详解】解:∵AB=AC,
∴∠ACB=∠ABC=70°,
∵直线l1∥l2,
∴∠1+∠ACB+∠ABC=180°,
∴∠1=180°-∠ABC-∠ACB=180°-70°-70°=40°.
故选:B.【点睛】此题考查了平行线的性质,等腰三角形的性质.解题的关键是注意掌握两直线平行,同旁内角互补与等边对等角定理的应用.7、A【分析】根据线段垂直平分线的性质即可得出答案.【详解】DE是线段AB的中垂线AE=BEAC=14BE+CE=AE+CE=AC=14的周长是24,即BC+BE+CE=24BC=24-(BE+CE)=10故选A.【点睛】本题考查了线段垂直平分线的性质定理,熟练掌握性质定理是解题的关键.8、A【分析】方程组的解就是一次函数y1=ax+b和y2=-bx+a(a≠0,b≠0)图象的交点,根据交点所在象限确定m、n的取值范围.【详解】方程组的解就是一次函数y1=ax+b和y2=bx+a(a≠0,b≠0)图象的交点,∵两函数图象交点在第一象限,∴m>0,n>0,故选A.【点睛】此题主要考查了一次函数与二元一次方程组的解,关键是掌握两函数图象的交点就是两函数解析式组成的方程组的解.9、D【解析】分析:本题利用绝对值的化简和二次根式的化简得出即可.解析:∵x<2,∴+|3﹣x|=.故选D.10、D【分析】根据无理数的定义判断各选项即可.【详解】A中,例如,是有理数,错误;B中,例如π,是无理数,错误;C中,无限循环小数是有理数,错误;D正确,无限不循环的小数是无理数故选:D【点睛】本题考查无理数的定义,注意含有π和根号开不尽的数通常为无理数.二、填空题(每小题3分,共24分)11、1【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案.【详解】由点与点的坐标关于y轴对称,得:
,,解得:,,∴.故答案为:.【点睛】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.12、.【分析】根据矩形的性质得到∠BAD=∠ABC=90°,BC=AD,由折叠的性质得到AF=AD,∠FAE=∠DAE,求得∠BAF=30°,∠DAF=60°,得到∠BAF=∠FAE,过B作BG⊥AF交AE于G,则点B与点G关于AF对称,过G作GH⊥AB于H交AF于M,则此时,BM+MH的值最小,推出△ABG是等边三角形,得到AG=BG=AB=5,根据勾股定理即可得到结论.【详解】解:∵四边形ABCD是矩形,∴∠BAD=∠ABC=90°,BC=AD.∵将△ADE沿AE所在直线翻折,得到△AFE,∴AF=AD,∠FAE=∠DAE.∵点F恰好是BC的中点,∴BF,∴∠BAF=30°,∴∠DAF=60°,∴∠FAE,∴∠BAF=∠FAE,过B作BG⊥AF交AE于G,则点B与点G关于AF对称,过G作GH⊥AB于H交AF于M,则此时,BM+MH的值最小.∵MN⊥AD,∴四边形AHMN是矩形,∴AN=HM,∴BM+MH=BM+AN=HG.∵AB=AG,∠BAG=60°,∴△ABG是等边三角形,∴AG=BG=AB=5,∴,∴HG,∴BM+AN的最小值为.故答案为:.【点睛】本题考查了翻折变换((折叠问题)),矩形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.13、1.【分析】根据角平分线上的点到角的两边距离相等可得CD=DE,再利用“HL”证明Rt△BCD和Rt△BED全等,根据全等三角形对应边相等可得BC=BE,然后求出△ADE的周长=AB.【详解】∵∠C=90∘,BD平分∠CBA,DE⊥AB,∴CD=DE,在Rt△BCD和Rt△BED中,∵∴Rt△BCD≌Rt△BED(HL),∴BC=BE,∴△ADE的周长=AE+AD+DE=AE+AD+CD=AE+AC=AE+BC=AE+BE=AB,∵△ADE的周长为1cm,∴AB=1cm.故答案为1cm.【点睛】本题考查了角平分线的性质和等腰直角三角形,熟练掌握这两个知识点是本题解题的关键.14、0.1.【解析】直接利用频数÷总数=频率,进而得出答案.【详解】解:∵30个参赛队的成绩被分为5组,第1~4组的频数分别为2,10,7,8,∴第5组的频率为:(30-2-10-7-8))÷30=0.1.故答案为:0.1.【点睛】本题考查频数与频率,正确掌握频率求法是解题关键.15、2.【详解】根据立方根的定义可得8的立方根为2.【点睛】本题考查了立方根.16、70°【解析】试题分析:由折叠的性质可求得∠EFC=∠EFC′=125°,由平行线的性质可求得∠DEF=∠BEF=55°,从而可求得∠AEB的度数.解:由折叠的性质可得∠EFC=∠EFC′=125°,∠DEF=∠BEF,∵AD∥BC,∴∠DEF+∠EFC=180°,∴∠DEF=∠BEF=180°﹣∠EFC=180°﹣125°=55°,∴∠AEB=180°﹣∠DEF﹣∠BEF=180°﹣55°﹣55°=70°,故答案为70°.17、2【分析】如图,作OB关于OA的对称直线OB′,在OB′设取一点D′,使得OD′=OD,则PD=PD′,作CH⊥OB′于H,交OA于P′.把问题转化为垂线段最短解决.【详解】解:如图,作OB关于OA的对称直线OB′,在OB′设取一点D′,使得OD′=OD,则PD=PD′,作CH⊥OB′于H,交OA于P′.∵PD+PC=PC+PD′≤CH,∴当C,P,D′共线且与CH重合时,PC+PD的值最小,在Rt△OCH中,∵∠CHO=90°,∠COH=90,OC=4,∴∠OCH=30°,∴OH=OC=2,CH=OH=2,HP′=OH•tan30°=,∴PC+PD的最小值为2,此时S△OP′C=S∠OCH﹣S△OHP′=×2×2﹣×2×=,故答案为2,.【点睛】本题考查轴对称,三角形的面积,垂线段最短等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题.18、3cm【分析】先根据三角形三个内角之比为1:2:3求出各角的度数判断出三角形的形状,再根据含30度角的直角三角形的性质求解.【详解】解:∵三角形三个内角之比为1:2:3,
∴设三角形最小的内角为x,则另外两个内角分别为2x,3x,
∴x+2x+3x=180°,
∴x=30°,3x=90°,
∴此三角形是直角三角形.
∴它的最小的边长,即30度角所对的直角边长为:×6=3cm.故答案为:3cm.【点睛】本题考查的是含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半,解答此题的关键是根据三角形三个内角度数的比值判断出三角形的形状.三、解答题(共66分)19、解:(1)①DE∥AC.②.(1)仍然成立,证明见解析;(3)3或2.【详解】(1)①由旋转可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等边三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.②过D作DN⊥AC交AC于点N,过E作EM⊥AC交AC延长线于M,过C作CF⊥AB交AB于点F.由①可知:△ADC是等边三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=1AC.又∵AD=AC∴BD=AC.∵∴.(1)如图,过点D作DM⊥BC于M,过点A作AN⊥CE交EC的延长线于N,
∵△DEC是由△ABC绕点C旋转得到,
∴BC=CE,AC=CD,
∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,
∴∠ACN=∠DCM,
∵在△ACN和△DCM中,,
∴△ACN≌△DCM(AAS),
∴AN=DM,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
即S1=S1;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,
所以BE=DF1,且BE、DF1上的高相等,
此时S△DCF1=S△BDE;
过点D作DF1⊥BD,
∵∠ABC=20°,F1D∥BE,
∴∠F1F1D=∠ABC=20°,
∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,
∴∠F1DF1=∠ABC=20°,
∴△DF1F1是等边三角形,
∴DF1=DF1,过点D作DG⊥BC于G,
∵BD=CD,∠ABC=20°,点D是角平分线上一点,
∴∠DBC=∠DCB=×20°=30°,BG=BC=,
∴BD=3∴∠CDF1=180°-∠BCD=180°-30°=150°,
∠CDF1=320°-150°-20°=150°,
∴∠CDF1=∠CDF1,
∵在△CDF1和△CDF1中,,
∴△CDF1≌△CDF1(SAS),
∴点F1也是所求的点,
∵∠ABC=20°,点D是角平分线上一点,DE∥AB,
∴∠DBC=∠BDE=∠ABD=×20°=30°,
又∵BD=3,
∴BE=×3÷cos30°=3,
∴BF1=3,BF1=BF1+F1F1=3+3=2,
故BF的长为3或2.20、(1),;(2);(3)点的坐标或或或【分析】(1)根据点A坐标,可以求出正比例函数解析式,再求出点B坐标即可求出一次函数解析式.(2)如图1中,过A作AD⊥y轴于D,求出AD后再求的面积即可.(3)分三种情形:①OA=OP,②AO=AP,③PA=PO讨论即可得出点的坐标;【详解】(1)∵正比例函数的图象经过点,∴,∴,∴正比例函数解析式为.如图1中,过作轴于,在中,,,∴,∴,∴,解得,∴一次函数的解析式为.(2)如图1中,过作轴于,∵,∴,∴,(3)当时,,,当时,,当时,线段的垂直平分线为,∴,满足条件的点的坐标或或或.【点睛】本题是一次函数综合题,掌握用待定系数法求解析式,勾股定理是解题的关键.21、(1)每台电冰箱与空调的进价分别是2000元,1600元;(2)该商店要获得最大利润应购进冰箱30台,空调70台【分析】(1)根据每台电冰箱的进价比每台空调的进价多400元,商店用6000元购进电冰箱的数量与用4800元购进空调的数量相等,可以列出相应的分式方程,从而可以解答本题;(2)根据题意和(1)中的结果,可以计算出两种方案下获得的利润,然后比较大小,即可解答本题.【详解】解:(1)设每台空调的进件为x元,则每台电冰箱的进件为(x+400)元,,解得,x=1600,经检验,x=1600是原分式方程的解,则x+400=2000元,答:每台电冰箱与空调的进价分别是2000元,1600元;(2)当购进冰箱30台,空调70台,所得利润为:(2100﹣2000)×30+(1750﹣1600)×70=13500(元),当购进冰箱50台,空调50台,所得利润为:(2100﹣2000)×50+(1750﹣1600)×50=12500(元),∵13500>12500,∴该商店要获得最大利润应购进冰箱30台,空调70台.【点睛】本题考查分式方程的应用,解答本题的关键是明确题意,利用分式方程的知识解答,注意分式方程一定要检验.22、①见解析;②∠BDC=75°.【分析】①利用SAS即可得证;②由全等三角形对应角相等得到∠AEB=∠BDC,利用外角的性质求出∠AEB的度数,即可确定出∠BDC的度数.【详解】①证明:在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);②解:∵在△ABC中,AB=CB,∠ABC=90°,∴∠BAC=∠ACB=45°,∵△ABE≌△CBD,∴∠AEB=∠BDC,∵∠AEB为△AEC的外角,∴∠AEB=∠ACB+∠CAE=45°+30°=75°,∴∠BDC=75°.【点睛】此题考查了全等三角形的判定与性质以及三角形的外角性质,熟练掌握全等三角形的判定与性质是解本题的关键.23、(1)见解析;(2)【分析】(1)欲证明CE=BF,只需证得△BCE≌△ABF,即可得到答案;
(2)利用(1)中的全等三角形的性质得到∠BCE=∠ABF,则由图示知∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,根据三角形内角和定理求得∠BPC.【详解】(1)证明:如图,是等边三角形,,,在和中,∴,.(2)由(1)知,,∴,即,,即:.【点睛】本题考查了全等三角形的判定与性质、等边三角形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.24、(1)购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)这所学校最多可购买2个乙种足球【解析】(1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元;(2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球.【详解】(1)设购买一个甲种足球需要x元,则购买一个乙种篮球需要(x+2)元,根据题意得:,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+2=1.答:购买一个甲种足球需要50元,购买一个乙种篮球需要1元.(2)设可购买m个乙种足球,则购买(50﹣m)个甲种足球,根据题意得:50×(1+10%)(50﹣m)+1×(1﹣10%)m≤2910,解得:m≤2.答:这所学校最多可购买2个乙种足球.【点睛】本题考查分式方程的应用,一元一次不等式的应用,解答此类问题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验,问题(2)要与实际相联系.25、1【分析】利用矩形的性质结合条件可证得△ADF≌△EAB,则可得AF=BE=4,再利用勾股定理可得DF的长.【详解】解:∵四边形ABCD为矩形,∴AD∥BC,且∠B=90°,∴∠DAF=∠BEA,∵DF⊥AE,∴∠DFA=∠B,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- SMTP服务器租赁合同范本
- 教育设施爱心基金管理办法
- 能源企业隔音墙施工合同
- 人工智能项目投资担保人还款协议
- 教育咨询高级顾问聘用合同样本
- 旅游设施施工合同备案说明
- 园林绿化施工管理合同样本
- 教育公益捐赠管理办法
- 环保设施清洁施工合同建筑膜
- 体育馆化粪池建设协议
- 装载机零件目录(以徐工lw500kn为例)
- 行政事业单位经济责任审计报告范文
- 泵盖铸造工艺课程设计
- 无损检测Ⅱ级人员超声(UT)锻件门类专业知识试题及详解
- 销售大户监管办法
- 小型装配式冷库设计(全套图纸)
- 电动汽车无线充电技术
- 审计工作手册
- 防蛇安全教育培训
- 胰腺癌一病一品知识分享
- 【原创】《基于地理实践力培养的校本课程开发研究》中期报告
评论
0/150
提交评论