2025届黑龙江省佳木斯市八年级数学第一学期期末学业水平测试模拟试题含解析_第1页
2025届黑龙江省佳木斯市八年级数学第一学期期末学业水平测试模拟试题含解析_第2页
2025届黑龙江省佳木斯市八年级数学第一学期期末学业水平测试模拟试题含解析_第3页
2025届黑龙江省佳木斯市八年级数学第一学期期末学业水平测试模拟试题含解析_第4页
2025届黑龙江省佳木斯市八年级数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届黑龙江省佳木斯市八年级数学第一学期期末学业水平测试模拟试题试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.在同一坐标系中,函数与的图象大致是()A. B.C. D.2.下列计算正确的是()A.(a2)3=a5 B.10ab3÷(﹣5ab)=﹣2ab2 C.(15x2y﹣10xy2)÷5xy=3x﹣2y D.a–2b3•(a2b–1)–2=3.在平面直角坐标系xOy中,A(1,3),B(5,1),点M在x轴上,当MA+MB取得最小值时,点M的坐标为()A.(5,0) B.(4,0) C.(1,0) D.(0,4)4.如果m是的整数部分,则m的值为()A.1 B.2 C.3 D.45.下列图形中,是轴对称图形的有()A.个 B.个 C.个 D.个6.将一副三角板按图中方式叠放,那么两条斜边所夹锐角的度数是()A.45°B.75°C.85°D.135°7.如图,,,,是数轴上的四个点,其中最适合表示无理数的点是()A.点 B..点 C.点 D.点8.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是()A.30和20 B.30和25 C.30和22.5 D.30和17.59.如图,直线y=-x+m与直线y=nx+5n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+5n>0的整数解为()A.-5,-4,-3 B.-4,-3 C.-4,-3,-2 D.-3,-210.如图,在直角三角形ABC中,AC=8,BC=6,∠ACB=90°,点E是AC的中点,点D在AB上,且DE⊥AC于E,则CD=()A.3 B.4 C.5 D.611.已知的值为,若分式中的,均扩大倍,则的值为()A. B. C. D.12.已知一次函数的图象上两点,,当时,有,那么的取值范围是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=______.14.已知等腰三角形的一个内角是80°,则它的底角是°.15.如图,点在内,因为,,垂足分别是、,,所以平分,理由是______.16.直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程2x+b=0的解是_____.17.在中,,,边上的高为,则的面积为______.18.如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′在直线y=x上,则点B与其对应点B′间的距离为_____.三、解答题(共78分)19.(8分)已知:如图,在中,于点,为上一点,连结交于,且,,求证:.20.(8分)计算题:(1)(2)21.(8分)如图,长方形中,,,,,点从点出发(不含点)以的速度沿的方向运动到点停止,点出发后,点才开始从点出发以的速度沿的方向运动到点停止,当点到达点时,点恰好到达点.(1)当点到达点时,的面积为,求的长;(2)在(1)的条件下,设点运动时间为,运动过程中的面积为,请用含的式子表示面积,并直接写出的取值范围.22.(10分)阅读下列材料:∵<<,即2<<3∴的整数部分为2,小数部分为﹣2请根据材料提示,进行解答:(1)的整数部分是.(2)的小数部分为m,的整数部分为n,求m+n﹣的值.23.(10分)已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=1.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.24.(10分)如图所示的正方形网格中,每个小正方形的边长都为1,△ABC的顶点都在网格线的交点上,点B关于y轴的对称点的坐标为(2,0),点C关于x轴的对称点的坐标为(﹣1,﹣2).(1)根据上述条件,在网格中建立平面直角坐标系xOy;(2)画出△ABC分别关于y轴的对称图形△A1B1C1;(3)写出点A关于x轴的对称点的坐标.25.(12分)基本运算:整式运算(1)a·a5-(1a3)1+(-1a1)3;(1)(1x+3)(1x-3)-4x(x-1)+(x-1)1.因式分解:(3)1x3-4x1+1x;(4)(m-n)(3m+n)1+(m+3n)1(n-m).26.已知,如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC的边AB,AC和CB的延长线于点D,E,F.(1)求证:∠F+∠FEC=2∠A;(2)过B点作BM∥AC交FD于点M,试探究∠MBC与∠F+∠FEC的数量关系,并证明你的结论.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据解析式知:第二个函数比例系数为正数,故图象必过一、三象限,而必过一、三或二、四象限,可排除C、D选项,再利用k进行分析判断.【详解】A选项:,.解集没有公共部分,所以不可能,故A错误;B选项:,.解集有公共部分,所以有可能,故B正确;C选项:一次函数的图象不对,所以不可能,故C错误;D选项:正比例函数的图象不对,所以不可能,故D错误.故选:B.【点睛】本题考查正比例函数、一次函数的图象性质,比较基础.2、C【分析】根据合并同类项、幂的乘方和积的乘方进行计算即可.【详解】解:A、(a2)3=a6,故错误;

B、10ab3÷(-5ab)=-2b2,故错误;C、(15x2y-10xy2)÷5xy=3x-2y,故正确;

D、a-2b3•(a2b-1)-2=,故错误;故选C.【点睛】本题考查了整式的混合运算,掌握合并同类项、幂的乘方和积的乘方的运算法则是解题的关键.3、B【分析】根据对称性,作点B关于x轴的对称点B′,连接AB′与x轴交于点M,根据两点之间线段最短,后求出的解析式即可得结论.【详解】解:如图所示:作点B关于x轴的对称点B′,连接AB′交x轴于点M,此时MA+MB=MA+MB′=AB′,根据两点之间线段最短,因为:B(5,1),所以:设直线为把代入函数解析式:解得:所以一次函数为:,所以点M的坐标为(4,0)故选:B.【点睛】本题考查了轴对称-最短路线问题,解决本题的关键是掌握对称性质.4、C【分析】找到所求的无理数在哪两个和它接近的整数之间,即可得出所求的无理数的整数部分.【详解】解:∵9<15<16,∴3<<4,∴m=3,故选:C.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.5、C【解析】根据轴对称图形的概念对各个图案进行判断即可得解.【详解】解:第1个是轴对称图形,故本选项正确;第2个是轴对称图形,故本选项正确;第3个是轴对称图形,故本选项正确;第4个不是轴对称图形,故本选项错误.故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6、B【分析】先根据直角三角板的性质求出∠1及∠2的度数,再根据三角形内角与外角的关系即可解答.【详解】解:如图,由题意,可得∠2=45°,∠1+∠2=90°,

∴∠1=90°45°=45°,

∴∠α=∠1+30°=45°+30°=75°.

故答案为:75°.【点睛】本题考查的是三角形内角和定理,三角形外角的性质,掌握三角形的外角等于与它不相邻的两个内角的和是解题的关键.7、D【分析】能够估算无理数的范围,结合数轴找到点即可.【详解】因为无理数大于,在数轴上表示大于的点为点;故选D.【点睛】本题考查无理数和数轴的关系;能够准确估算无理数的范围是解题的关键.8、C【分析】将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得.【详解】将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30,所以该组数据的众数为30、中位数为=22.5,故选C.【点睛】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.9、B【解析】根据一次函数图像与不等式的性质即可求解.【详解】直线y=nx+5n中,令y=0,得x=-5∵两函数的交点横坐标为-2,∴关于x的不等式-x+m>nx+5n>0的解集为-5<x<-2故整数解为-4,-3,故选B.【点睛】此题主要考查一次函数与不等式的关系,解题的关键是熟知一次函数的图像与性质.10、C【分析】根据已知条件DE是垂直平分线得到,根据等腰三角形的性质得到,结合∠ACB=90°可得从而,由跟勾股定理得到,于是得到结论.【详解】解:点为的中点,于,,,,,,,,,,,故选C.【点睛】本题考查了等腰三角形性质和判定、勾股定理,线段垂直平分线的性质,正确理解线段垂直平分线性质和等腰三角形性质是解题的关键.11、C【分析】依题意分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可.【详解】分别用2x和2y去代换原分式中的x和y,得===,故选:C.【点睛】本题考查了分式的基本性质.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.12、D【分析】先根据时,有判断y随x的增大而减小,所以x的比例系数小于0,那么m-1<0,解出即可.【详解】解:∵当时,有∴y随x的增大而减小∴m-1<0∴m<1故选D.【点睛】此题主要考查了一次函数的图像性质,熟记k>0,y随x的增大而增大;k<0,y随x的增大而减小.二、填空题(每题4分,共24分)13、240.【详解】试题分析:∠1+∠2=180°+60°=240°.考点:1.三角形的外角性质;2.三角形内角和定理.14、80°或50°【解析】分两种情况:①当80°的角为等腰三角形的顶角时,底角的度数=(180°−80°)÷2=50°;②当80°的角为等腰三角形的底角时,其底角为80°,故它的底角度数是50或80.故答案为:80°或50°.15、角的内部到角两边距离相等的点在角的角平分线上【分析】根据角平分线判定定理即可得到结果.【详解】解:∵PM⊥OA,PN⊥OB,PM=PN∴OP平分∠AOB(在角的内部,到角的两边距离相等的点在这个角的平分线上)故答案为:角的内部到角两边距离相等的点在角的角平分线上.【点睛】本题考查角平分线判定定理,掌握角平分线判定定理的内容是解题的关键.16、x=1【分析】由直线y=1x+b与x轴的交点坐标是(1,0),求得b的值,再将b的值代入方程1x+b=0中即可求解.【详解】把(1,0)代入y=1x+b,

得:b=-4,

把b=-4代入方程1x+b=0,

得:x=1.

故答案为:x=1.【点睛】考查了一次函数与坐标轴的交点坐标问题,解题关键抓住直线y=1x+b与x轴的交点坐标即为关于x的方程1x+b=0的解.17、36或1【分析】过点A作AD⊥BC于点D,利用勾股定理列式求出BD、CD,再分点D在边BC上和在CB的延长线上两种情况分别求出BC的长度,然后根据三角形的面积公式列式计算即可得解.【详解】解:过点A作AD⊥BC于点D,∵边上的高为8cm,∴AD=8cm,∵AC=17cm,由勾股定理得:cm,cm,如图1,点D在边BC上时,BC=BD+CD=6+15=21cm,∴△ABC的面积==×21×8=1cm2,如图2,点D在CB的延长线上时,BC=CD−BD=15−6=9cm,∴△ABC的面积==×9×8=36cm2,综上所述,△ABC的面积为36cm2或1cm2,故答案为:36或1.【点睛】本题考查了勾股定理,作辅助线构造出直角三角形是解题的关键,难点是在于要分情况讨论.18、1.【详解】解:如图,连接AA′、BB′.∵点A的坐标为(0,2),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是2.又∵点A的对应点在直线y=x上一点,∴2=x,解得x=1,∴点A′的坐标是(1,2),∴AA′=1,∴根据平移的性质知BB′=AA′=1.故答案为1.【点睛】本题考查了一次函数图象上点的坐标特征、坐标与图形变化﹣平移.根据平移的性质得到BB′=AA′是解题的关键.三、解答题(共78分)19、详见解析.【解析】根据HL证明Rt△BDF≌Rt△ADC,进而解答即可.【详解】∵AD⊥BC,∴∠BDF=∠ADC=90°.在Rt△BDF和Rt△ADC中,,∴Rt△BDF≌Rt△ADC(HL),∴∠FBD=∠DAC.又∵∠BFD=∠AFE,∴∠AEF=∠BDF=90°,∴BE⊥AC.【点睛】本题考查了全等三角形的判定和性质,关键是根据HL证明Rt△BDF≌Rt△ADC.20、(1)4;(2)【分析】(1)原式利用二次根式除法法则计算即可求出值;(2)原式利用完全平方公式,以及平方差公式计算即可求出值.【详解】解:(1)原式=4÷2﹣6÷2+3÷2=2﹣1+3=4;(2)原式=+1+4﹣3==.【点睛】本题考查了二次根式的混合运算,解题的关键是掌握运算法则和运算律,注意乘法公式的运用.21、(1);(2).【分析】(1)先求出点P到A的时间,再根据的面积可求出a的值,然后根据“当点到达点,点恰好到点”列出等式求解即可得;(2)分三种情况:点P在线段AD上,点Q未出发;当P在线段AD上,点Q在线段CD上;当P在线段AB上,点Q在线段CD上;然后分别利用长方形的性质、三角形的面积公式求解即可得.【详解】(1)点到的时间为,此时设当点到达点,点恰好到点解得故的长为;(2)依题意,分以下三种情况讨论:①当时,点P在线段AD上,点未出发如图1,过点作于点②如图2,当,即时,点在线段上,点在线段上则,③当,即时,点在线段上,点在线段上如图3,过点作于点则综上,.【点睛】本题考查了函数的几何应用、三角形与长方形的性质等知识点,较难的是题(2),依据题意,正确分三种情况讨论是解题关键.22、(1)1;(1)1【分析】(1)利用例题结合,进而得出答案;(1)利用例题结合,进而得出答案.【详解】解:(1)∵,∴,∴的整数部分是1.故答案为:1;(1)由(1)可得出,,∵,∴n=3,∴.【点睛】本题考查的知识点是估算无理数的大小,估算无理数的大小要用逼近法,同时也考查了平方根.23、(1)证明见解析(2)答案见解析(3)8【解析】(1)过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM,根据非负数的性质求出a、b的值即可得结论;(2)如图2,过A作AH平分∠OAB,交BM于点H,则△AOE≌△BAH,可得AH=OE,由已知条件可知ON=AM,∠MOE=∠MAH,可得△ONE≌△AMH,∠ABH=∠OAE,设BM与NE交于K,则∠MKN=181°﹣2∠ONE=91°﹣∠NEA,即2∠ONE﹣∠NEA=91°;(3)如图3,过H作HM⊥OF,HN⊥EF于M、N,可证△FMH≌△FNH,则FM=FN,同理:NE=EK,先得出OE+OF﹣EF=2HK,再由△APF≌△AQE得PF=EQ,即可得OE+OF=2OP=8,等量代换即可得2HK+EF的值.【详解】解:(1)∵|a﹣b|+b2﹣8b+16=1∴|a﹣b|+(b﹣4)2=1∵|a﹣b|≥1,(b﹣4)2≥1∴|a﹣b|=1,(b﹣4)2=1∴a=b=4过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM∴OA平分∠MON即OA是第一象限的角平分线(2)过A作AH平分∠OAB,交BM于点H∴∠OAH=∠HAB=45°∵BM⊥AE∴∠ABH=∠OAE在△AOE与△BAH中,∴△AOE≌△BAH(ASA)∴AH=OE在△ONE和△AMH中,∴△ONE≌△AMH(SAS)∴∠AMH=∠ONE设BM与NE交于K∴∠MKN=181°﹣2∠ONE=91°﹣∠NEA∴2∠ONE﹣∠NEA=91°(3)过H作HM⊥OF,HN⊥EF于M、N可证:△FMH≌△FNH(SAS)∴FM=FN同理:NE=EK∴OE+OF﹣EF=2HK过A作AP⊥y轴于P,AQ⊥x轴于Q可证:△APF≌△AQE(SAS)∴PF=EQ∴OE+OF=2OP=8∴2HK+EF=OE+OF=8【点睛】本题考查非负数的性质,平面直角坐标系中点的坐标,等腰直角三角形,全等三角形的判定和性质.24、(1)详见解析;(2)详见解析;(3)(-4,-4).【分析】(1)依据点B关于y轴的对称点坐标为(2,0),点C关于x轴的对称点坐标为(-1,-2),即可得到坐标轴的位置;(2)依据轴对称的性质,即可得到△ABC分别关于y轴的对称图形△A1B1C1;(3)依据关于x轴的对称点的横坐标相同,纵坐标互为相反数,即可得到点A关于x轴的对称点的坐标.【详解】解:(1)如图所示,建立平面直角坐标系xOy.(2)如图所示,△A1B1C1即为所求;(3)A点关于x轴的对称点的横坐标相同,纵坐标互为相反数,所以点A(-4,4)关于x轴的对称点的坐标

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论