




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届贵州省石阡县八年级数学第一学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108° B.90° C.72° D.60°2.某小区有一块边长为a的正方形场地,规划修建两条宽为b的绿化带.方案一如图甲所示,绿化带面积为S甲:方案二如图乙所示,绿化带面积为S乙.设,下列选项中正确的是()A. B. C. D.3.如图,已知中,点是、角平分线的交点,点到边的距离为3,且的面积为6,则的周长为()A.6 B.4 C.3 D.无法确定4.如图,直线,被直线、所截,并且,,则等于()A.56° B.36° C.44° D.46°5.如图,在平面直角坐标系中,点P(-1,2)关于直线x=1的对称点的坐标为()A.(1,2) B.(2,2) C.(3,2) D.(4,2)6.将点M(-5,y)向上平移6个单位长度后得到的点与点M关于x轴对称,则y的值是()A.-6 B.6 C.-3 D.37.下列图形中:①线段,②角,③等腰三角形,④有一个角是30°的直角三角形,其中一定是轴对称图形的个数()A.1个 B.2个 C.3个 D.4个8.若等腰三角形一腰上的高与另一腰的夹角为36°,则它的顶角为()A.36° B.54° C.72°或36° D.54°或126°9.已知一次函数y=kx﹣b(k≠0)图象如图所示,则kx﹣1<b的解集为()A.x>2 B.x<2 C.x>0 D.x<010.正比例函数的函数值随的增大而减小,则一次函数的图象大致是()A. B. C. D.11.到三角形的三个顶点距离相等的点是()A.三条角平分线的交点 B.三条边的垂直平分线的交点C.三条高的交点 D.三条中线的交点12.实数a、b在数轴上对应点的位置如图所示,化简|a|-的结果是()A.-2a+b B.2a-bC.-b D.-2a-b二、填空题(每题4分,共24分)13.如图所示,在△ABC中,,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到直线AB的距离是______cm.14.计算:=___________.15.已知平行四边形的面积是,其中一边的长是,则这边上的高是_____cm.16.若关于x的分式方程无解,则m的值是_____.17.要使在实数范围内有意义,x应满足的条件是_____.18.计算:的结果是_____.三、解答题(共78分)19.(8分)解不等式组:,并求出它的最小整数解.20.(8分)(1)求值:;(2)解方程:.21.(8分)甲、乙两名同学进行射击训练,在相同条件下各射靶5次,成绩统计如下表:命中环数78910甲命中相应环数的次数2201乙命中相应环数的次数1310(1)求甲、乙两人射击成绩的平均数;(2)甲、乙两人中,谁的射击成绩更稳定些?请说明理由.22.(10分)为了解学生课余活动情况.晨光中学对参加绘画,书法,舞蹈,乐器这四个课外兴趣小组的人员分布情况进行调查.并报据收集的数据绘制了两幅不完整的统计阁.请根据图中提供的信息.解答下面的问题:(1)此次共调查了多少名同学?(2)将条形图补充完整,并计算扇形统计图中书法部分的圆心角的度数.(3)如果该校共有300名学生参加这4个课外兴趣小组,而每位教师最多只能辅导本组的20名学生,估计乐器兴趣小组至少需要准备多少名教师?23.(10分)如图,点,过点做直线平行于轴,点关于直线对称点为.(1)求点的坐标;(2)点在直线上,且位于轴的上方,将沿直线翻折得到,若点恰好落在直线上,求点的坐标和直线的解析式;(3)设点在直线上,点在直线上,当为等边三角形时,求点的坐标.24.(10分)已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.求证:AD=AE.25.(12分)请用无刻度的直尺在下列方格中画一条线段将梯形面积平分(画出三种不同的画法).26.(1);(2)
参考答案一、选择题(每题4分,共48分)1、C【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.2、D【分析】由题意可求S甲=2ab-b2,S乙=2ab,代入可求k的取值范围.【详解】∵S甲=2ab-b2,S乙=2ab.∴∵a>b>0∴<k<1故选D.【点睛】本题考查了正方形的性质,能用代数式正确表示阴影部分面积是本题的关键.3、B【解析】根据题意过O分别作,连接OB,利用角平分线上的点到角两边的距离相等,得出进行分析即可.【详解】解:由题意过O分别作,连接OB如图所示:∵点是、角平分线的交点,∴,∵点到边的距离为3,即,的面积为6,∴,∴,即的周长为4.故选:B.【点睛】本题考查角平分线的性质,熟练掌握并利用角平分线上的点到角两边的距离相等是解题的关键.4、D【分析】依据l1∥l2,即可得到∠1=∠3=44°,再根据l3⊥l4,可得∠2=90°-44°=46°.【详解】解:如图,∵l1∥l2,
∴∠1=∠3=44°,
又∵l3⊥l4,
∴∠2=90°-44°=46°,
故选:D.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.5、C【详解】解:设对称点的坐标是x(x,y)则根据题意有,y=2,故符合题意的点是(3,2),故选C【点睛】本题考查点的坐标,本题属于对点关于直线对称的基本知识的理解和运用.6、C【分析】直接利用平移的性质得出平移后点的坐标,再利用关于x轴对称点的性质得出答案.【详解】∵点M(-5,y)向上平移6个单位长度,∴平移后的点为:(-5,y+6),∵点M(-5,y)向上平移6个单位长度后所得到的点与点M关于x轴对称,∴y+y+6=0,解得:y=-1.故选:C.【点睛】本题主要考查了关于x轴对称点的性质:横坐标不变,纵坐标变为相反数,正确表示出平移后点的坐标是解题关键.7、C【分析】直接利用轴对称图形的性质分别分析得出答案.【详解】解:①线段,是轴对称图形;②角,是轴对称图形;③等腰三角形,是轴对称图形;④有一个角是30°的直角三角形,不是轴对称图形.故选:C.【点睛】本题考查的知识点是轴对称图形的定义,理解定义内容是解此题的关键.8、D【解析】根据题意画出图形,一种情况等腰三角形为锐角三角形,即可推出顶角的度数为50°.另一种情况等腰三角形为钝角三角形,由题意,即可推出顶角的度数为130°.【详解】①如图1,等腰三角形为锐角三角形,
∵BD⊥AC,∠ABD=36°,
∴∠A=54°,
即顶角的度数为54°.
②如图2,等腰三角形为钝角三角形,
∵BD⊥AC,∠DBA=36°,
∴∠BAD=54°,
∴∠BAC=126°.
故选D.【点睛】本题考查了直角三角形的性质、等腰三角形的性质,解题的关键在于正确的画出图形,结合图形,利用数形结合思想求解.9、C【分析】将kx-1<b转换为kx-b<1,再根据函数图像求解.【详解】由kx-1<b得到:kx-b<1.∵从图象可知:直线与y轴交点的坐标为(2,1),∴不等式kx-b<1的解集是x>2,∴kx-1<b的解集为x>2.故选C.【点睛】本题考查的是一次函数的图像,熟练掌握函数图像是解题的关键.10、A【分析】根据的函数值随的增大而减小,得到k0,由此判定所经过的象限为一、二、三象限.【详解】∵的函数值随的增大而减小,∴k0,∴经过一、二、三象限,A选项符合.故选:A.【点睛】此题考查一次函数的性质,y=kx+b中,k0时图象过一三象限,k0时图象过二四象限;b0时图象交y轴于正半轴,b0时图象交y轴于负半轴,掌握特点即可正确解答.11、B【分析】根据到线段两端点的距离相等的点在这条线段的垂直平分线上得出即可.【详解】解:∵OA=OB,∴O在线段AB的垂直平分线上,∵OC=OA,∴O在线段AC的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,即O是△ABC的三边垂直平分线的交点,故选:B.【点睛】本题考查了对线段垂直平分线性质的理解和运用,注意:线段两端点的距离相等的点在这条线段的垂直平分线上.12、C【分析】先由已知图判定a、0和b之间的大小关系,进而判定(a-b)的正负,再利用绝对值与二次根式性质化简原式即可得解.【详解】解:由图可知b>0>a∴a-b<0,a<0故原式可化为-a-(b-a)=-a-b+a=-b故选:C.【点睛】本题主要考察数轴与绝对值、二次根式性质综合,易错点在于能否正确确定各项符号.二、填空题(每题4分,共24分)13、1【分析】根据BD,BC可求CD的长度,根据角平分线的性质作DE⊥AB,则点到直线AB的距离即为DE的长度.【详解】过点D作DE⊥AB于点E∵BC=8cm,BD=5cm,∴CD=1cm∵AD平分∠CAB,CD⊥AC∴DE=CD=1cm∴点到直线AB的距离是1cm故答案为:1.【点睛】本题主要考查角平分线的性质,熟练掌握角平分线的性质,合理添加辅助线是解题的关键.14、7-4.【分析】依据完全平方公式进行计算.【详解】【点睛】此题考查完全平方公式以及二次根式的混合运算,熟记公式即可正确解答.15、【分析】根据平行四边形的面积公式:S=ah,计算即可.【详解】设这条边上的高是h,由题意知,,解得:,故填:.【点睛】本题考查平行四边形面积公式,属于基础题型,牢记公式是关键.16、2【详解】解:去分母,得m﹣2=x﹣1,x=m﹣1.∵关于x的分式方程无解,∴最简公分母x﹣1=0,∴x=1,当x=1时,得m=2,即m的值为2.故答案为2.17、x≥1【分析】根据被开方数大于等于0列式求解即可.【详解】要使在实数范围内有意义,x应满足的条件x﹣1≥0,即x≥1.故答案为:x≥1【点睛】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.18、【分析】逆用积的乘方运算法则以及平方差公式即可求得答案.【详解】===(5-4)2018×=+2,故答案为+2.【点睛】本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.三、解答题(共78分)19、不等式组的解集是:1≤x<4,最小整数解是1【分析】通过去分母,移项,合并同类项,未知数系数化为1,即可求解.【详解】,解不等式①得:x≥1,解不等式②得:x<4,∴不等式组的解集是:1≤x<4,∴最小整数解是1.【点睛】本题主要考查一元一次不等式组的解法,掌握解一元一次不等式组的基本步骤,是解题的关键.20、(1)4;(2).【分析】(1)分别计算算术平方根、立方根和零次幂,将结果相加减即可;(2)依次移项、系数化为1、两边直接开平方即可得出答案.【详解】解:(1)原式==4;(2)移项得:,系数化为1得:,两边直接开平方得:.【点睛】本题考查求立方根,零指数幂和平方根方程.(1)中能根据定义分别计算是解题关键;(2)注意不要忘掉负值.21、(1)甲、乙两人射击成绩的平均数均为8环;(2)乙.【分析】(1)直接利用算术平均数的计算公式计算即可;(2)根据方差的大小比较成绩的稳定性.【详解】(1)(环);=8(环);(2)∵甲的方差为:[(7-8)2+(7-8)2+(8-8)2+(8-8)2+(10-8)2]=1.2(环2);乙的方差为:[(7-8)2+(8-8)2+(8-8)2+(8-8)2+(9-8)2]=0.4(环2);∴乙的成绩比较稳定.【点睛】本题考查了极差和方差,极差和方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.22、(1)200;(2)图详见解析,36°;(3)1.【分析】(1)绘画组的人数有90人,所占比例为41%,故总数=某项人数÷所占比例;(2)乐器组的人数=总人数﹣其它组人数;书法部分的圆心角的度数=所占比例×360°;(3)根据每组所需教师数=300×某组的比例÷20计算.【详解】解:(1)∵绘画组的人数有90人,所占比例为41%,∴总人数=90÷41%=200(人);(2)乐器组的人数=200﹣90﹣20﹣30=60人,画图(如下):书法部分的圆心角为:×360°=36°;(3)乐器需辅导教师:300×÷20=4.1≈1(名),答:乐器兴趣小组至少需要准备1名教师.【点睛】本题考查了条形统计图与扇形统计图的综合,灵活的将条形与扇形统计图中的数据相关联是解题的关键.23、(1)(3,0);(2)A(1,);直线BD为;(3)点P的坐标为(,)或(,).【分析】(1)根据题意,点B、C关于点M对称,即可求出点C的坐标;(2)由折叠的性质,得AB=CB,BD=AD,根据勾股定理先求出AM的长度,设点D为(1,a),利用勾股定理构造方程,即可求出点D坐标,然后利用待定系数法求直线BD.(3)分两种情形:如图2中,当点P在第一象限时,连接BQ,PA.证明点P在AC的垂直平分线上,构建方程组求出交点坐标即可.如图3中,当点P在第三象限时,同法可得△CAQ≌△CBP,可得∠CAQ=∠CBP=30°,构建方程组解决问题即可.【详解】解:(1)根据题意,∵点B、C关于点M对称,且点B、M、C都在x轴上,又点B(),点M(1,0),∴点C为(3,0);(2)如图:由折叠的性质,得:AB=CB=4,AD=CD=BD,∵BM=2,∠AMB=90°,∴,∴点A的坐标为:(1,);设点D为(1,a),则DM=a,BD=AD=,在Rt△BDM中,由勾股定理,得,解得:,∴点D的坐标为:(1,);设直线BD为,则,解得:,∴直线BD为:;(3)如图2中,当点P在第一象限时,连接BQ,PA.∵△ABC,△CPQ都是等边三角形,∴∠ACB=∠PCQ=60°,∴∠ACP=∠BCQ,∵CA=CB,CP=CQ,∴△ACP≌△BCQ(SAS),∴AP=BQ,∵AD垂直平分线段BC,∴QC=QB,∴PA=PC,∴点P在AC的垂直平分线上,由,解得,∴P(,).如图3中,当点P在第三象限时,同法可得△CAQ≌△CBP,
∴∠CAQ=∠CBP
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宠物服务行业宠物健康免责协议书
- 维修车辆赔偿协议书
- 健康生活中心会员服务协议
- 影视制作公司演员聘用协议
- 特色学校教师聘用合同
- 演员肖像权使用许可协议
- 幸福家庭的亲子活动案例
- 四年级劳动课社会责任计划
- 新修订的教育法解读
- 高一上学期生物教师培训计划
- 住房公积金个人账户合并申请表(文书模板)
- 医院第一季度全成本核算分析报告
- Rational-Rose-用例图、顺序图、活动图、类图、状态机图-实例
- 《马说》-教学设计【教学参考】
- 骨干教师考试题库(全)
- 华为智慧园区解决方案
- 世界银行集团简介课件(PPT 48页)
- 中国毛笔字书法教育培训动态PPT模板
- 委外加工作业流程图
- 面试无机化学研究前沿ppt课件
- 金属矿床地下开采——矿床开拓方法设计(完整版)
评论
0/150
提交评论