2025届江苏省太仓市数学八年级第一学期期末教学质量检测试题含解析_第1页
2025届江苏省太仓市数学八年级第一学期期末教学质量检测试题含解析_第2页
2025届江苏省太仓市数学八年级第一学期期末教学质量检测试题含解析_第3页
2025届江苏省太仓市数学八年级第一学期期末教学质量检测试题含解析_第4页
2025届江苏省太仓市数学八年级第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省太仓市数学八年级第一学期期末教学质量检测试题题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.15 B.18 C.21 D.242.以下是有关环保的四个标志,从图形的整体看,是轴对称图形的是()A. B. C. D.3.现有两根木棒,长度分别为5cm和17cm,若不改变木棒的长度,要钉成一个三角形木架,则应在下列四根木棒中选取()A.24cm的木棒 B.15cm的木棒 C.12cm的木棒 D.8cm的木棒4.如图所示的图案中,是轴对称图形且有两条对称轴的是()A. B. C. D.5.下列各式:中,分式的个数有()A.1个 B.2个 C.3个 D.4个6.若m<n<0,那么下列结论错误的是()A.m﹣9<n﹣9 B.﹣m>﹣n C. D.2m<2n7.下列各组数中,不能作为直角三角形的三边长的是()A.7,24,25 B.9,12,15 C.,, D.,,8.要使有意义,则实数x的取值范围是()A.x≥1 B.x≥0 C.x≥﹣1 D.x≤09.已知+c2﹣6c+9=0,则以a,c为边的等腰三角形的周长是()A.8 B.7 C.8或7 D.1310.等腰三角形的两边长是6cm和3cm,那么它的周长是A.9cm B.12cm C.12cm或15cm D.15cm二、填空题(每小题3分,共24分)11.如图,直线AB∥CD,直线EF分别与直线AB和直线CD交于点E和F,点P是射线EA上的一个动点(P不与E重合)把△EPF沿PF折叠,顶点E落在点Q处,若∠PEF=60°,且∠CFQ:∠QFP=2:5,则∠PFE的度数是_______.12.已知中,,,长为奇数,那么三角形的周长是__________.13.当x=______________时,分式的值是0?14.如图矩形中,对角线相交于点,若,cm,则的长为__________cm.15.把命题“直角三角形的两个锐角互余”改写成“如果……那么……”的形式:__________________.16.写出命题“若,则”的逆命题:________.17.已知一组数据:3,4,5,5,6,6,6,这组数据的众数是________.18.质检员小李从一批鸡腿中抽查了只鸡腿,它们的质量如下(单位:):,,,,,,,这组数据的极差是_____.三、解答题(共66分)19.(10分)如图,在Rt△ABC中,(M2,N2),∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.(1)求证:△ADE≌△CDB;(2)若BC=,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.20.(6分)运用乘法公式计算(1)(2)21.(6分)先化简:,然后从的范围内选取一个合适的整数作为x的值代入求值.22.(8分)解方程:+=423.(8分)为了比较+1与的大小,小伍和小陆两名同学对这个问题分别进行了研究.(1)小伍同学利用计算器得到了,,所以确定+1(填“>”或“<”或“=”)(2)小陆同学受到前面学习在数轴上用点表示无理数的启发,构造出所示的图形,其中∠C=90°,BC=3,D在BC上且BD=AC=1.请你利用此图进行计算与推理,帮小陆同学对+1和的大小做出准确的判断.24.(8分)勾股定理是数学中最常见的定理之一,熟练的掌握勾股数,对迅速判断、解答题目有很大帮助,观察下列几组勾股数:1234…………(1)你能找出它们的规律吗?(填在上面的横线上)(2)你能发现,,之间的关系吗?(3)对于偶数,这个关系(填“成立”或“不成立”)吗?(4)你能用以上结论解决下题吗?25.(10分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120,现有1600个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过4200元,那么甲至少加工了多少天?26.(10分)如图,在△ABC中,AD是BC边的中线,E是AD的中点,过A点作AF∥BC交BE的延长线于点F,连结CF.求证:四边形ADCF是平行四边形.

参考答案一、选择题(每小题3分,共30分)1、A【分析】此题涉及的知识点是平行四边形的性质.根据平行四边形的对边相等和对角线互相平分可得,OB=OD,又因为E点是CD的中点,可得OE是△BCD的中位线,可得OE=BC,所以易求△DOE的周长.【详解】解:∵▱ABCD的周长为32,∴2(BC+CD)=32,则BC+CD=1.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=2.又∵点E是CD的中点,DE=CD,∴OE是△BCD的中位线,∴OE=BC,∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=2+9=3,即△DOE的周长为3.故选A【点睛】此题重点考察学生对于平行四边形的性质的理解,三角形的中位线,平行四边形的对角对边性质是解题的关键.2、B【解析】根据轴对称图形的定义求解即可得答案.【详解】A,此图案不是轴对称图形,故该选项不符合题意;B、此图案是轴对称图形,故该选项符合题意;C、此图案不是轴对称图形,故该选项不符合题意;D、此图案不是轴对称图形,故该选项不符合题意;故选B.【点睛】本题主要考查轴对称图形,掌握其定义是解题的关键:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.3、B【分析】根据三角形的三边关系,确定第三边的取值范围,即可完成解答.【详解】解:由三角形的三边关系得:17-5<第三边<17+5,即第三边在12到22之间故答案为B.【点睛】本题考查了三角形的三边关系的应用,找到三角形三边关系与实际问题的联系是解答本题的关键.4、D【详解】选项A、B中的图形是轴对称图形,只有1条对称轴;选项C中的图形不是轴对称图形;选项D中的图形是轴对称图形,有2条对称轴.故选D.5、B【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:的分母中含有字母,是分式;的分母中不含字母,不是分式;故选:B.【点睛】本题主要考查分式的概念,掌握分式的概念是解题的关键.6、C【解析】A:等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可;B:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可;C:由倒数的定义即可得出结论;D:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.【详解】因为m<n<0,所以m﹣9<n﹣9,A正确;因为m<n<0,所以﹣m>﹣n,B正确;因为m<n<0,所以,C错误;因为m<n<0,所以2m<2n,D正确.故选C.【点睛】本题考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.7、C【分析】根据勾股定理依次判断各选项即可.【详解】A、,故能构成直角三角形;B、,故能构成直角三角形;C、,故不能构成直角三角形;D、,故能构成直角三角形;故选C.【点睛】本题是对勾股定理逆定理的考查,熟练掌握定理是解决本题的关键.8、A【分析】二次根式要有意义,被开方数必须是非负数.【详解】要使有意义,则x-1≥0,解得x≥1故选A【点睛】本题考查了二次根式有意义条件,解题的关键是被开方数大于等于0.9、C【分析】根据非负数的性质列式求出a、c的值,再分a是腰长与底边两种情况讨论求解.【详解】解:可化为:,∵,,∴,,解得a=2,c=3,①a=2是腰长时,三角形的三边分别为2、2、3,∵2+2=4>3,∴2、2、3能组成三角形,∴三角形的周长为7,②a=2是底边时,三角形的三边分别为2、3、3,能够组成三角形,∴三角形的周长为1;综上所述,三角形的周长为7或1.故选:C.【点睛】本题考查了非负数的性质和等腰三角形的性质,解题的关键是分情况讨论并利用三角形的三边关系进行判断.10、D【解析】试题分析:题目给出等腰三角形有两条边长为6cm和3cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm时,6﹣3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15cm.故选D.考点:等腰三角形的性质;三角形三边关系.二、填空题(每小题3分,共24分)11、50°【分析】依据平行线的性质,即可得到∠EFC的度数,再求出∠CFQ,即可求出∠PFE的度数.【详解】∵AB∥CD,∠PEF=60°,∴∠PEF+∠EFC=180°,∴∠EFC=180°﹣60°=120°,∵将△EFP沿PF折叠,便顶点E落在点Q处,∴∠PFE=∠PFQ,∵∠CFQ:∠QFP=2:5∴∠CFQ=∠EFC=×120°=20°,∴∠PFE=∠EFQ=(∠EFC﹣∠CFQ)=(120°﹣20°)=50°.故答案为:50°.【点睛】本题主要考查了平行线的性质以及翻折问题的综合应用,正确掌握平行线的性质和轴对称的性质是解题的关键.12、18或20【分析】根据三角形三边关系定理得到第三边的范围,再根据BC为奇数和取值范围确定三角形的周长即可.【详解】解:根据三角形的三边关系可得:8-3<BC<8+3,即:5<BC<11,∵BC为奇数,∴BC的长为7或9,∴三角形的周长为18或20.故答案为:18或20.【点睛】本题主要考查三角形的三边关系,关键是掌握三角形三边关系定理即三角形任意两边之和大于第三边;三角形的任意两边之差小于第三边.13、-1【解析】由题意得,解之得.14、2【解析】根据矩形对角线的性质可推出△ABO为等边三角形.已知AB=1,易求AC.解:已知∠AOB=60°,根据矩形的性质可得AO=BO,所以∠OAB=∠ABO=60度.因为AB=1,所以AO=BO=AB=1.故AC=2.本题考查的是矩形的性质以及等边三角形的有关知识.15、如果一个三角形是直角三角形,那么它的两个锐角互余.【分析】首先找出原命题中的条件及结论,然后写成“如果…,那么…”的形式即可.【详解】解:故答案为:如果一个三角形是直角三角形,那么它的两个锐角互余.【点睛】此题主要考查学生对命题的理解及运用能力.16、若,则【分析】根据逆命题的概念直接写出即可.【详解】命题“若,则”的逆命题为:若,则,故答案为:若,则.【点睛】本题是对命题知识的考查,熟练掌握命题知识是解决本题的关键.17、1【分析】根据众数的定义,即可得到答案.【详解】∵3,4,5,5,1,1,1中1出现的次数最多,∴这组数据的众数是:1.故答案是:1.【点睛】本题主要考查众数的定义,掌握“一组数据中,出现次数最多的数,称为众数”是解题的关键.18、【分析】极差就是这组数据中的最大值与最小值的差.【详解】,,,,,,,这组数据的极差是:79-72=7故答案为:7【点睛】本题考查了极差的定义,掌握极差的定义是解题的关键.三、解答题(共66分)19、(1)证明见解析;(2)BH+EH的最小值为1.【解析】(1)只要证明△DEB是等边三角形,再根据SAS即可证明;(2)如图,作点E关于直线AC点E',连接BE'交AC于点H.则点H即为符合条件的点.【详解】(1)在Rt△ABC中,∠BAC=10°,E为AB边的中点,∴BC=EA,∠ABC=60°,∵△DEB为等边三角形,∴DB=DE,∠DEB=∠DBE=60°,∴∠DEA=120°,∠DBC=120°,∴∠DEA=∠DBC,∴△ADE≌△CDB;(2)如图,作点E关于直线AC点E',连接BE'交AC于点H,则点H即为符合条件的点,由作图可知:EH=HE',AE'=AE,∠E'AC=∠BAC=10°,∴∠EAE'=60°,∴△EAE'为等边三角形,∴EE'=EA=AB,∴∠AE'B=90°,在Rt△ABC中,∠BAC=10°,BC=,∴AB=2,AE'=AE=,∴BE'==1,∴BH+EH的最小值为1.【点睛】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,轴对称中的最短路径问题、勾股定理等,熟练掌握相关的性质与判定定理、利用轴对称添加辅助线确定最短路径问题是解题的关键.20、(1)1;(2)【分析】(1)利用完全平方公式计算即可;(2)利用平方差公式计算即可.【详解】(1)解:原式====1.(2)解:原式====【点睛】本题考查了平方差公式、完全平方公式,解题的关键是熟练掌握并运用公式.21、;当x=2时,原式=-1.【分析】根据分式的运算法则进行化简,然后根据分式有意义的条件找出x的值代入原式即可求出答案.【详解】====.∵有意义,∴x≠0,x≠±3,∵,x为整数,∴当x=2时,原式==-1.【点睛】本题考查分式的化简求值及分式有意义的条件,解题的关键是熟练运用分式的运算法则,本题属于中等题型.22、【分析】先去分母,方程的两边同乘(x﹣1),再展开计算,化简求解出未知数,最后验算结果即可.【详解】方程的两边同乘(x﹣1),得:x-2=4(x﹣1),即:解得:,检验:当时,x﹣1≠0,∴原分式方程的解为.【点睛】本题主要考车了解方程的相关计算,注意不能把“解”子漏掉,最后得到的结果代入检验原式的分母是否为0,如果为零,则把该结果舍去.23、(1)>;(2)见解析.【解析】(1)根据题目给出的数值判断大小即可;(2)根据勾股定理求出AB,再根据三角形的三边关系判断即可.【详解】(1)>;(2),,.【点睛】本题考查了勾股定理与三角形的三边关系,解题的关键是熟练的掌握勾股定理的运算与三角形的三边关系.24、(1),,;(2);(3)成立;(4)0【分析】(1)根据表中的规律即可得出;(2)由前几组数可得出,,之间的关系;(3)另n=2k代入,,计算即可得出;(4)根据(2)中的关系式,将进行合理的拆分,使之符合(2)中的规律即可计算得出.【详解】解:(1)由表中信息可得,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论