版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省襄阳襄城区四校联考数学八上期末综合测试模拟试题试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A. B. C. D.2.下列分解因式正确的是A. B.C. D.3.计算的结果为()A.1 B.x+1 C. D.4.计算下列各式,结果为的是()A. B. C. D.5.下列运算错误的是()A. B. C. D.6.一次函数的图象不经过的象限是()A.一 B.二 C.三 D.四7.太原市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足10000元,则这个小区的住户数()A.至少20户 B.至多20户 C.至少21户 D.至多21户8.如果m﹥n,那么下列结论错误的是()A.m+2﹥n+2 B.m-2﹥n-2 C.2m﹥2n D.-2m﹥-2n9.如图,在四边形中,是边的中点,连接并延长,交的延长线于点,.添加一个条件使四边形是平行四边形,你认为下面四个条件中可选择的是()A. B. C. D.10.在,分式的个数有(
)A.3个 B.4个 C.5个 D.6个二、填空题(每小题3分,共24分)11.我国首艘国产航母山东舰于2019年12月17日下午4时交付海军,山东舰的排水量达到65000吨,请将65000精确到万位,并用科学记数法表示______.12.如图,已知△ABC为等边三角形,BD为中线,延长BC至点E,使CE=CD=1,连接DE,则BE=________.13.若,,则=_______14.若是完全平方公式,则__________.15.若关于的分式方程的解是负数,则m的取值范围是_________________.16.=______;17.已知点P(a,b)在一次函数y=4x+3的图象上,则代数式4a﹣b﹣2的值等于.18.如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴正半轴上,∠AOC=60°,若将菱形OABC绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的坐标为_____.三、解答题(共66分)19.(10分)“绿水青山就是金山银山”,随着生活水平的提高人们对饮水品质的需求越来越高,岳阳市槐荫公司根据市场需求代理,两种型号的净水器,每台型净水器比每台型净水器进价多元,用万元购进型净水器与用万元购进型净水器的数量相等(1)求每台型、型净水器的进价各是多少元?(2)槐荫公司计划购进,两种型号的共台进行试销,,购买资金不超过万元.试求最多可以购买型净水器多少台?20.(6分)分式计算其中.21.(6分)阅读理解:我们把称为二阶行列式,其运算法则为,如:,解不等式,请把解集在数轴上表示出来.22.(8分)先化简,再求值:1﹣÷,其中x=﹣2,y=.23.(8分)如图所示,四边形ABCD中AB=AD,AC平分∠BCD,AE⊥BC,AF⊥CD,图中有无和△ABE全等的三角形?请说明理由24.(8分)如图,在中,,,且,求的度数.25.(10分)已知:A(1,0),B(0,4),C(4,2).(1)在坐标系中描出各点(小正方形网格的长度为单位1),画出△ABC;(三点及连线请加黑描重)(2)若△A1B1C1与△ABC关于y轴对称,请在图中画出△A1B1C1;(3)点Q是x轴上的一动点,则使QB+QC最小的点Q坐标为.26.(10分)如图,已知过点B(1,0)的直线l1与直线l2:y=2x+4相交于点P(﹣1,a),l1与y轴交于点C,l2与x轴交于点A.(1)求a的值及直线l1的解析式.(2)求四边形PAOC的面积.(3)在x轴上方有一动直线平行于x轴,分别与l1,l2交于点M,N,且点M在点N的右侧,x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、C【分析】先求出球的所有个数与红球的个数,再根据概率公式解答即可.【详解】解:共8球在袋中,其中5个红球,故摸到红球的概率为,故选:C.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.2、C【解析】根据因式分解的方法(提公因式法,运用公式法),逐个进行分析即可.【详解】A.,分解因式不正确;B.,分解因式不正确;C.,分解因式正确;D.2,分解因式不正确.故选:C【点睛】本题考核知识点:因式分解.解题关键点:掌握因式分解的方法.3、C【分析】先进行括号内的计算,然后将除号换为乘号,再进行分式间的约分化简.【详解】原式====.故选C.【点睛】本题考查分式的混合运算,混合运算顺序为:先乘方,再乘除,然后加减,有括号的先算括号里面的.4、D【分析】分别计算每个选项然后进行判断即可.【详解】解:A.不能得到,选项错误;B.,选项错误;C.,不能得到,选项错误;D.,选项正确.故选:D.【点睛】本题考查了同底数幂的运算,熟练掌握运算法则是解题的关键.5、C【分析】根据负整数指数幂,逐个计算,即可解答.【详解】A.,正确,故本选项不符合题意;B.,正确,故本选项不符合题意;C.,错误,故本选项符合题意;D.,正确,故本选项不符合题意;故选:C.【点睛】本题主要考查了负整数指数幂的运算.负整数指数为正整数指数的倒数.6、B【分析】根据一次函数中k与b的符合判断即可得到答案.【详解】∵k=2>0,b=-3<0,∴一次函数的图象经过第一、三、四象限,故选:B.【点睛】此题考查一次函数的性质,熟记性质定理即可正确解题.7、C【分析】根据“x户居民按1000元计算总费用>整体初装费+500x”列不等式求解即可.【详解】解:设这个小区的住户数为户.则,解得是整数,这个小区的住户数至少1户.故选:C,【点睛】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等关系式即可求解.注意本题中的住户数是整数,所以在x>20的情况下,至少取1.8、D【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【详解】A.两边都加2,不等号的方向不变,故A正确;B.两边都减2,不等号的方向不变,故B正确;C.两边都乘以2,不等号的方向不变,故C正确;D.两边都乘以-2,不等号的方向改变,故D错误;故选D.【点睛】此题考查不等式的性质,解题关键在于掌握运算法则9、D【分析】把A、B、C、D四个选项分别作为添加条件进行验证,D为正确选项.添加D选项,即可证明△DEC≌△FEB,从而进一步证明DC=BF=AB,且DC∥AB.【详解】添加A、,无法得到AD∥BC或CD=BA,故错误;添加B、,无法得到CD∥BA或,故错误;添加C、,无法得到,故错误;添加D、∵,,,∴,,∴,∵,∴,∴四边形是平行四边形.故选D.【点睛】本题是一道探索性的试题,考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.10、B【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:,分式的有:共有4个.故选:B【点睛】此题主要考查了分式概念,关键是掌握分式的分母必须含有字母.二、填空题(每小题3分,共24分)11、【分析】首先把65000精确到万位,然后根据:用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,判断出用科学记数法表示是多少即可.【详解】65000≈70000,
70000=7×1.
故答案为:7×1.【点睛】本题主要考查了用科学记数法和近似数.一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.12、1【分析】根据等边三角形和三角形中线的定义求出BC=AC=2CD=2,即可求得BE的长.【详解】∵△ABC为等边三角形,
∴AB=BC=AC,
∵BD为中线,∴AD=CD,∵CD=CE=1,∴BC=AC=2CD=2,∴BE=BC+CE=2+1=1.故答案为:1.【点睛】本题考查了等边三角形性质,三角形中线的定义等知识点的应用,关键是求出BC=AC=2CD=2.13、1【详解】解:根据题意,可得所以两式相减,得4xy=4,xy=1.考点:完全平方公式14、【分析】根据乘积二倍项和已知平方项确定出这两个数为和,再利用完全平方式求解即可.【详解】解:,.故答案为:16.【点睛】本题主要了完全平方式,根据乘积二倍项确定出这两个数是求解的关键.15、且【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于m的不等式,求出不等式的解集即可确定出m的范围.【详解】方程两边同乘(),
解得,
∵,
∴,
解得,
又,
∴,
∴,
即且.
故答案为:且.【点睛】本题考查了分式方程的解以及解一元一次不等式,关键是会解出方程的解,特别注意:不要漏掉隐含条件最简公分母不为1.16、【分析】分别计算零指数幂和负指数幂,然后把结果相加即可.【详解】解:==.故答案为:.【点睛】本题考查零指数幂和负指数幂.理解任意非零数的零指数幂都等于0和灵活运用负指数幂的计算公式是解题关键.17、﹣5【分析】试题分析:∵点P(a,b)在一次函数y=4x+3的图象上,∴b=4a+3∴4a﹣b﹣2=4a﹣(4a+3)﹣2=﹣5,即代数式4a﹣b﹣2的值等于﹣5【详解】请在此输入详解!18、【解析】作B′H⊥x轴于H点,连结OB,OB′,根据菱形的性质得到∠AOB=30°,再根据旋转的性质得∠BOB′=75°,OB′=OB=2,则∠AOB′=∠BOB′﹣∠AOB=45°,所以△OBH为等腰直角三角形,根据等腰直角三角形性质可计算得OH=B′H=,然后根据第四象限内点的坐标特征写出B′点的坐标.【详解】作B′H⊥x轴于H点,连结OB,OB′,如图,∵四边形OABC为菱形,∴∠AOC=180°﹣∠C=60°,OB平分∠AOC,∴∠AOB=30°,∵菱形OABC绕原点O顺时针旋转75°至第四象限OA′B′C′的位置,∴∠BOB′=75°,OB′=OB=2,∴∠AOB′=∠BOB′﹣∠AOB=45°,∴△OB′H为等腰直角三角形,∴OH=B′H=OB′=,∴点B′的坐标为(,﹣),故答案为(,﹣).【点睛】本题考查了坐标与图形变化,旋转的性质,解直角三角形等,熟知旋转前后哪些线段或角相等是解题的关键.三、解答题(共66分)19、(1)A型净水器每台的进价为2000元,B型净水器每台的进价为1800元;(2)最多可以购买A型净水器40台.【分析】(1)设A型净水器每台的进价为元,则B型净水器每台的进价为(-200)元,根据数量=总价单价,结合用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等,即可得出关于的分式方程,解方程检验即可.(2)设购买A型净水器台,则购买B型净水器为(50-)台,根据购买资金=A型净水器的进价购买数量+B型净水器的进价购买数量不超过9.8万元即可得出关于的一元一次不等式,解之即可得出的取值范围,也就得出最多可购买A型净水器的台数.【详解】解:(1)设A型净水器每台的进价为元,则B型净水器每台的进价为(-200)元,由题意,得解得=2000经检验,=2000是分式方程得解∴-200=1800答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元.(2)设购买A型净水器台,则购买B型净水器为(50-)台,由题意,得2000+1800(50-)≤98000解得≤40答:最多可以购买A型净水器40台.故答案为(1)A型净水器每台的进价为2000元,B型净水器每台的进价为1800元;(2)最多可以购买A型净水器40台.【点睛】本题考查了分式方程的应用,一元一次不等式的应用.解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系列出一元一次不等式方程.20、;.【分析】根据分式的运算法则即可化简,再代入a,b即可求解.【详解】===∵=1,∴原式=.【点睛】此题主要考查分式的化简求值,解题的关键是熟知分式的运算法则.21、,数轴见解析.【分析】根据题中所给的运算法则把所求的不等式的左边的行列式进行转化,然后再利用解不等式的方法进行求解,求得解集后在数轴上表示出来即可.【详解】∵,∴不等式可转化为:,∴4x-6+2x>2x-3,∴,解得:,在数轴上表示解集如图所示:.【点睛】本题考查了新定义运算,解一元一次不等式,在数轴上表示不等式的解集等,弄清新的运算法则,熟练掌握解一元一次不等式的基本步骤以及在数轴表示解集的方法是解题的关键.22、﹣,.【分析】原式利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,之后将x、y代入计算即可求得答案.【详解】解:原式=1﹣=﹣,当x=﹣2,y=时,原式=.【点睛】本题考查了分式的化简求值,熟练的掌握分式的运算法则是解本题的关键,在解题的时候,要注意式子的整理和约分.23、证△ABE≌△ADF(AD=AB、AE=AF)【分析】由题中条件AC平分∠BCD,AE⊥BC,AF⊥CD,可得AE=AF,由AB=AD,可由HL判定Rt△ABE≌Rt△ADF,即可得证.【详解】图中△ADF和△ABE全等.∵AC平分∠BCD,AF⊥CD,AE⊥CE;∴AF=AE,∠AFD=∠AEB=90°在Rt△ADF与Rt△ABE中,AB=AD,AF=AE∴Rt△ADF≌Rt△ABE.【点睛】本题考查的是全等三角形的判定定理HL,判定定理即“斜边,直角边判定定理”判定直角三角形全等.注意应用.24、10【分析】设∠B=∠C=x,∠EDC=y,构建方程即可解决问题;【详解】设∠B=∠C=x,∠EDC=y,∵AD=AE,∴∠ADE=∠AED=x+y,∵∠DAE=180−2(x+y)=180−20−2x,∴2y=20,∴y=10,∴∠CDE=10.【点睛】本题主要考查等腰三角形的判定与性质,还涉及三角形内角和等知识点,需要熟练掌握等腰三角形的判定与性质.25、(1)答案见解析;(2)答案见解析;(3)(,0)【分析】(1)依据A(1,0),B(0,4),C(4,2),即可描出各点,画出△ABC;(2)依据轴对称的性质,即可得到△A1B1C1;(3)作点C关于x轴的对称点C'(4,﹣2),连接BC',依据两点之间,线段最短,即可得到点Q的位置.【详解】解:(1)如图所示,△ABC即为所求;(2)如图所示,△A1B1C1即为所求;(3)作点C关于x轴的对称点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电力行业输电线路安全检测
- 百货行业安全生产工作总结
- 主管如何引导团队讨论计划
- 2024年税务师题库(考点梳理)
- 2023年公开考调工作人员报名表
- 2024年电力安全管理制度
- 制氧机租赁合同(2篇)
- 创业培训服务协议书(2篇)
- 2024年甘肃省反洗钱知识竞赛考试题库(含答案)
- 【人教版九上历史】21天打卡计划(填空版)
- 产后出血预防与处理指南(2023)解读
- 《姓氏歌》第一课时(课件)语文一年级下册
- 2024风力发电机组 整机一阶调谐质量阻尼器
- GB/T 43686-2024电化学储能电站后评价导则
- 小学英语语法复习课件1
- (高清版)TDT 1037-2013 土地整治重大项目可行性研究报告编制规程
- 中国旅游集团2024年校园招聘笔试参考题库附带答案详解
- 导管室进修汇报课件
- 《万以内数的认识》大单元整体设计
- 监控系统调试检验批质量验收记录(新表)
- 24.教育规划纲要(2024-2024)
评论
0/150
提交评论