吴忠市重点中学2025届八年级数学第一学期期末监测试题含解析_第1页
吴忠市重点中学2025届八年级数学第一学期期末监测试题含解析_第2页
吴忠市重点中学2025届八年级数学第一学期期末监测试题含解析_第3页
吴忠市重点中学2025届八年级数学第一学期期末监测试题含解析_第4页
吴忠市重点中学2025届八年级数学第一学期期末监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吴忠市重点中学2025届八年级数学第一学期期末监测试题试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,若圆盘的半径为2,中间有一边长为1的正方形,向圆盘内随机投掷一枚飞镖,则飞镖落在中间正方形内的概率是()A. B. C. D.2.如图,平面直角坐标系中,在边长为1的正方形的边上有—动点沿正方形运动一周,则的纵坐标与点走过的路程之间的函数关系用图象表示大致是()A. B. C. D.3.下列图形中,是轴对称图形的是()A. B.C. D.4.下列运算中,错误的是()A. B. C. D.5.在直角坐标系中,函数与的图像大数是()A. B.C. D.6.若点A(n,2)在y轴上,则点B(2n-1,3n+1)位于()A.第四象限. B.第三象限 C.第二象限 D.第一象限7.如图,,,则图中等腰三角形的个数是()A.5 B.6 C.8 D.98.若分式有意义,则a的取值范围是()A.a=0 B.a="1" C.a≠﹣1 D.a≠09.下列等式成立的是()A. B.(a2)3=a6 C.a2.a3=a6 D.10.某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数15321则这个队队员年龄的众数和中位数分别是()A.15,16 B.15,15 C.15,15.5 D.16,15二、填空题(每小题3分,共24分)11.分解因式:x2-2x+1=__________.12.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是_____.13.若是关于、的二元一次方程,则__.14.八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下:甲组成绩(环)87889乙组成绩(环)98797由上表可知,甲、乙两组成绩更稳定的是________组.15.一列高铁列车从甲地匀速驶往乙地,一列特快列车从乙地匀速驶往甲地,两车同时出发,设特快列车行驶的时间为x(单位:时),特快列车与高铁列车之间的距离为y(单位:千米),y与x之间的函数关系如图所示,则图中线段CD所表示的y与x之间的函数关系式是_____.16.若分式的值为0,则的值为______.17.如图,等腰三角形中,是的垂直平分线,交于,恰好是的平分线,则=_____18.如图,一架长25m的云梯,斜靠在墙上,云梯底端在点A处离墙7米,如果云梯的底部在水平方向左滑动8米到点B处,那么云梯的顶端向下滑了_____m.三、解答题(共66分)19.(10分)先化简再求值:,其中.20.(6分)解不等式:.21.(6分)若关于x的分式方程=1的解为正数,求m的取值范围.22.(8分)如图,在平面直角坐标系中,点坐标为,点是轴正半轴上一点,且,点是轴上位于点右侧的一个动点,设点的坐标为.(1)点的坐标为___________;(2)当是等腰三角形时,求点的坐标;(3)如图2,过点作交线段于点,连接,若点关于直线的对称点为,当点恰好落在直线上时,_____________.(直接写出答案)23.(8分)在5×7的方格纸上,任意选出5个小方块涂上颜色,使整个图形(包括着色的“对称”)有:①1条对称轴;②2条对称轴;③4条对称轴.24.(8分)(1)解不等式,并把解表示在数轴上.(2)解不等式组.25.(10分)如图,正方形的边长为2,点为坐标原点,边、分别在轴、轴上,点是的中点.点是线段上的一个点,如果将沿直线对折,使点的对应点恰好落在所在直线上.(1)若点是端点,即当点在点时,点的位置关系是________,所在的直线是__________;当点在点时,点的位置关系是________,所在的直线表达式是_________;(2)若点不是端点,用你所学的数学知识求出所在直线的表达式;(3)在(2)的情况下,轴上是否存在点,使的周长为最小值?若存在,请求出点的坐标:若不存在,请说明理由.26.(10分)已知:如图OA平分∠BAC,∠1=∠1.求证:AO⊥BC.同学甲说:要作辅助线;同学乙说:要应用角平分线性质定理来解决:同学丙说:要应用等腰三角形“三线合一”的性质定理来解决.请你结合同学们的讨论写出证明过程.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据几何概率的公式,分别求解出圆形的面积和正方形的面积即可.【详解】由题:,∴,故选:D.【点睛】本题考查几何概率的计算,准确计算各部分面积是解题关键.2、D【分析】根据正方形的边长即可求出AB=BC=CD=DA=1,然后结合图象可知点A的纵坐标为2,线段BC上所有点的纵坐标都为1,线段DA上所有点的纵坐标都为2,再根据点P运动的位置逐一分析,用排除法即可得出结论.【详解】解:∵正方形ABCD的边长为1,∴AB=BC=CD=DA=1由图象可知:点A的纵坐标为2,线段BC上所有点的纵坐标都为1,线段DA上所有点的纵坐标都为2,∴当点P从A到B运动时,即0<S≤1时,点P的纵坐标逐渐减小,故可排除选项A;当点P到点B时,即当S=1时,点P的纵坐标y=1,故可排除选项B;当点P从B到C运动时,即1<S≤2时,点P的纵坐标y恒等于1,故可排除C;当点P从C到D运动时,即2<S≤3时,点P的纵坐标逐渐增大;当点P从D到A运动时,即3<S≤4时,点P的纵坐标y恒等于2,故选D.【点睛】此题考查的是根据图形上的点的运动,找出对应的图象,掌握横坐标、纵坐标的实际意义和根据点的不同位置逐一分析是解决此题的关键.3、D【分析】根据轴对称图形的概念求解即可.【详解】解:A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、是轴对称图形,本选项正确.故选:D.【点睛】本题考查轴对称图形的判断,关键在于熟记轴对称图形的概念.4、D【解析】分式的基本性质是分式的分子、分母同时乘以或除以同一个非1的数或式子,分式的值不变.据此作答.【详解】解:A、分式的分子、分母同时乘以同一个非1的数c,分式的值不变,故A正确;

B、分式的分子、分母同时除以同一个非1的式子(a+b),分式的值不变,故B正确;

C、分式的分子、分母同时乘以11,分式的值不变,故C正确;

D、,故D错误.

故选D.【点睛】本题考查了分式的基本性质.无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为1.5、B【分析】根据四个选项图像可以判断过原点且k<0,,-k>0即可判断.【详解】解:A.与图像增减相反,得到k<0,所以与y轴交点大于0故错误;B.与图像增减相反,得到k<0,所以与y轴交点大于0故正确;C.与图像增减相反,为递增一次函数且不过原点,故错误;D.过原点,而图中两条直线都不过原点,故错误.故选B【点睛】此题主要考查了一次函数图像的性质,熟记k>0,y随x的增大而增大;k<0,y随x的增大而减小;常数项为0,函数过原点.6、C【分析】由点在y轴的条件是横坐标为0,得出点A(n,2)的n=0,再代入求出点B的坐标及象限.【详解】∵点A(n,2)在y轴上,∴n=0,∴点B的坐标为(﹣1,1).则点B(2n﹣1,3n+1)在第二象限.故选:C.【点睛】本题主要考查点的坐标问题,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.7、C【详解】解:∵,∴∴,∴△ABC,△ABD,△ACE,△BOC,∴△BEO,△CDO,△BCD,△CBE是等腰三角形.∴图中的等腰三角形有8个.故选D.8、C【解析】分式分母不为0的条件,要使在实数范围内有意义,必须.故选C9、B【分析】直接利用零指数幂的性质、幂的乘方法则、同底数幂的乘法法则、积的乘方法则分别化简得出答案.【详解】解:A、a0=1(a≠0),故此选项错误;

B、根据幂的乘方法则可得(a2)3=a6,正确;

C、根据同底数幂的乘法法则可得a2.a3=a5,故此选项错误;

D、根据积的乘方法则可得,故此选项错误;

故选:B.【点睛】此题主要考查了零指数幂的性质、幂的乘方法则、同底数幂的乘法法则、积的乘方法则等知识,正确掌握运算法则是解题关键.10、C【分析】由题意直接根据众数和中位数的定义求解可得.【详解】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,∴中位数为=15.5岁,故选:C.【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.二、填空题(每小题3分,共24分)11、(x-1)1.【详解】由完全平方公式可得:故答案为.【点睛】错因分析容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底.12、85°.【分析】根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC的度数.【详解】∵在△ABC中,∠A=50°,∠ABC=70°,∴∠C=60°,∵BD平分∠ABC,∴∠DBC=35°,∴∠BDC=180°﹣60°﹣35°=85°.故答案为85°.13、-5【分析】直接利用二元一次方程的定义分析得出答案.【详解】∵是关于、的二元一次方程,∴,,,解得:,,∴.故答案为:.【点睛】本题主要考查了二元一次方程的定义,正确把握未知数的次数是解题关键.14、甲【解析】根据方差计算公式,进行计算,然后比较方差,小的稳定,在计算方差之前还需先计算平均数.【详解】=8,=8,[(8-8)2+(7-8)2+(8-8)2+(8-8)2+(9-8)2]=0.4,[(9-8)2+(8-8)2+(7-8)2+(9-8)2+(7-8)2]=0.8∵<∴甲组成绩更稳定.故答案为:甲.【点睛】考查平均数、方差的计算方法,理解方差是反映一组数据的波动大小的统计量,方差越小,数据越稳定.15、y=100x【分析】由函数图象可以直接得出甲、乙两地之间的距离为1200千米和特快列车走完全程的时间,就可以求出特快列车的速度,进而求出高铁列车的速度而得出C的坐标,由待定系数法求出结论.【详解】解:由函数图象得:甲、乙两地之间的距离为1200千米,特快列车速度为:1200÷12=100(千米/时),高铁列车与特快列车的速度和为1200÷3=400(千米/时),高铁列车的速度为:400﹣100=300(千米/时),∴高铁列车走完全程时间为1200÷300=4(小时),∴高铁列车到达时是在它俩相遇之后的1小时后,此时高铁列车与特快列车相距400千米,∴C(4,400).设线段CD的解析式为y=kx+b(k≠0,k、b为常数),把(4,400),(12,1200)代入y=kx+b中,有解得∴y=100x.故答案为:y=100x【点睛】本题主要考查一次函数的应用及待定系数法,能够读懂图象,掌握待定系数法是解题的关键.16、1.【分析】根据分式的值为零的条件即可得出.【详解】解:∵分式的值为0,

∴x-1=0且x≠0,

∴x=1.

故答案为1.【点睛】本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.17、36【分析】设=x,根据垂直平分线的性质得到,根据角平分线的性质得到,由得到,再根据三角形内角和列方程求出x即可.【详解】设=x,∵MN是的垂直平分线,∴,∵恰好是的平分线∴,∵∴,∵即解得x=36故答案为:36.【点睛】此题主要考查三角形角度求解,解题的关键是熟知等腰三角形、垂直平分线及角平分线的性质.18、1【分析】先根据勾股定理求出OC的长度,然后再利用勾股定理求出OD的长度,最后利用CD=OC-OD即可得出答案.【详解】解:如图由题意可得:AC=BD=25m,AO=7m,AB=8m,CD即为所求则OC==21(m),当云梯的底端向左滑了8米,则OB=7+8=15(m),故OD==20(m),则CD=OC-OD=21-20=1m.故答案为:1.【点睛】本题主要考查勾股定理的应用,掌握勾股定理是解题的关键.三、解答题(共66分)19、.【分析】先因式分解,再利用分式的除法性质:除以一个分式等于乘以这个分式的倒数,约分、化简,最后代入特殊值解题即可.【详解】解:原式===a﹣2,当a=2+时,原式=2+﹣2=.【点睛】本题考查分式的化简求值,其中涉及因式分解:十字相乘法、平方差公式、完全平方公式等知识,是重要考点,掌握相关知识是解题关键.20、【分析】根据解一元一次不等式的方法求解即可.【详解】解:去括号,得,移项、合并同类项,得,系数化为1,得,即.【点睛】本题考查了一元一次不等式的解法和分母有理化,本题的易错点是易忽略.21、m>2且m≠1.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为正数确定出m的范围即可.【详解】解:去分母得:m﹣1=x﹣1,解得:x=m﹣2,由分式方程的解为正数,得到m﹣2>0,且m﹣2≠1,解得:m>2且m≠1,故答案为:m>2且m≠1.【点睛】本题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解题的关键.22、(1);(2)或或;(3)【分析】(1)根据勾股定理可以求出AO的长,则可得出A的坐标;(2)分三种情况讨论等腰三角形的情况,得出点P的坐标;(3)根据,点在直线上,得到,利用点,关于直线对称点,根据对称性,可证,可得,,设,则有,根据勾股定理,有:解之即可.【详解】解:(1)∵点坐标为,点是轴正半轴上一点,且,∴是直角三角形,根据勾股定理有:,∴点的坐标为;(2)∵是等腰三角形,当时,如图一所示:∴,∴点的坐标是;当时,如图二所示:∴∴点的坐标是;当时,如图三所示:设,则有∴根据勾股定理有:即:解之得:∴点的坐标是;(3)当是钝角三角形时,点不存在;当是锐角三角形时,如图四示:连接,∵,点在直线上,∴和是直角三角形,∴,∵点,关于直线对称点,根据对称性,有,∴,∴则有:∴是等腰三角形,则有,∴,设,则有,根据勾股定理,有:即:解之得:【点睛】本题考查了三角形的综合问题,涉及的知识点有:解方程,等腰三角形的判定与性质,对称等知识点,能分类讨论,熟练运用各性质定理,是解题的关键.23、答案见解析.【分析】①直接利用轴对称图形的性质得出符合题意的答案;②直接利用轴对称图形的性质得出符合题意的答案;③直接利用轴对称图形的性质得出符合题意的答案.【详解】①如图1所示:②如图2所示:③如图3所示:24、(1),图见解析;(2).【分析】(1)先解出不等式的解集,再表示在数轴上即可;(2)分别解出各不等式的解集,再找到其公共解集.【详解】(1)解集表示在数轴上如下:(2)解解不等式①得x≥2;解不等式②得;∴不等式组的解集为:.【点睛】此题主要考查不等式和不等式组的求解,解题的关键是熟知不等式的求解方法.25、(1)A,y轴;B,y=x;(2)y=3x;(3)存在.由于,理由见解析.【解析】(1)由轴对称的性质可得出结论;

(2)连接OD,求出OD=,设点P(,2),PA′=,PC=,CD=1.可得出()2=(2)2+12,解方程可得解x=.求出P点的坐标即可得出答案;

(3)可得出点D关于轴的对称点是D′(2,-1),求出直线PD′的函数表达式为,则答案可求出.【详解】(1)由轴对称的性质可得,若点P是端点,即当点P在A点时,A′点的位置关系是点A,

OP所在的直线是y轴;

当点P在C点时,

∵∠AOC=∠BOC=45°,

∴A′点的位置关系是点B,

OP所在的直线表达式是y=x.

故答案为:A,y轴;B,y=x;

(2)连接OD,

∵正方形AOBC的边长为2,点D是BC的中点,

∴OD=.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论