版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届重庆市巴川中学数学八年级第一学期期末复习检测模拟试题试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.62.如图,等腰三角形ABC底边BC的长为4cm,面积为12cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F,若D为BC边上的中点,M为线段EF上一点,则△BDM的周长最小值为()A.5cm B.6cm C.8cm D.10cm3.如图,已知,点...在射线上,点...在射线上;...均为等边三角形,若,则的边长为()A. B. C. D.4.“Iamagoodstudent.”这句话中,字母“a”出现的频率是()A.2 B. C. D.5.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为3m和4m..按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是()A.2m B.3m C.4m D.6m6.下列各式由左到右的变形中,属于分解因式的是()A. B.C. D.7.将直线y=-x+a的图象向下平移2个单位后经过点A(3,3),则a的值为()A.-2 B.2 C.-4 D.88.如图,在长方形中,点,点分别为和上任意一点,点和点关于对称,是的平分线,若,则的度数是()A. B. C. D.9.计算的结果为()A. B. C. D.10.平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为().A.(﹣2,﹣3) B.(2,﹣3) C.(﹣3,﹣2) D.(3,﹣2)二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,的直角顶点的坐标为
,点在轴正半轴上,且.将先绕点逆时针旋转,再向左平移3个单位,则变换后点的对应点的坐标为______.12.一根木棒能与长为和的两根木棒钉成一个三角形,则这根木棒的长度的取值范围是____________.13.如图,把绕点逆时针旋转,得到,点恰好落在边上,连接,则__________度.14.在△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是________.15.如图,是的中线,、分别是和延长线上的点,且,连接、,下列说法:①和的面积相等,②,③,④,⑤,其中一定正确的答案有______________.(只填写正确的序号)16.如图,折叠长方形,使顶点与边上的点重合,已知长方形的长度为,宽为,则______.17.分解因式:m2+4m=_____.18.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=__________度.三、解答题(共66分)19.(10分)已知在平面直角坐标系中有三点A(﹣2,1),B(3,1),C(2,3),请解答下列问题:(1)在坐标系内描出A,B,C的位置;(2)画出△ABC关于x轴对称的图形△A1B1C1,并写出顶点A1,B1,C1的坐标;(3)写出∠C的度数.20.(6分)△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的△A1B1C1;(2)点P在x轴上,且点P到点A与点C的距离之和最小,直接写出点P的坐标为.21.(6分)如图,在中,,,点为的中点,点为边上一点且,延长交的延长线于点,若,求的长.22.(8分)如图,已知△ABC的其中两个顶点分别为:A(-4,1)、B(-2,4).(1)请根据题意,在图中建立平面直角坐标系,并写出点C的坐标;(2)若△ABC每个点的横坐标保持不变,纵坐标分别乘-1,顺次连接这些点,得到△A1B1C1,画出△A1B1C1,判断△A1B1C1与△ABC有怎样的位置关系?并写出点B的对应点B1的坐标.23.(8分)利用乘法公式计算:24.(8分)(1)如图1,在△ABC中,D是BC的中点,过D点画直线EF与AC相交于E,与AB的延长线相交于F,使BF=CE.①已知△CDE的面积为1,AE=kCE,用含k的代数式表示△ABD的面积为;②求证:△AEF是等腰三角形;(2)如图2,在△ABC中,若∠1=2∠2,G是△ABC外一点,使∠3=∠1,AH∥BG交CG于H,且∠4=∠BCG﹣∠2,设∠G=x,∠BAC=y,试探究x与y之间的数量关系,并说明理由;(3)如图3,在(1)、(2)的条件下,△AFD是锐角三角形,当∠G=100°,AD=a时,在AD上找一点P,AF上找一点Q,FD上找一点M,使△PQM的周长最小,试用含a、k的代数式表示△PQM周长的最小值.(只需直接写出结果)25.(10分)如图1,点是线段的中点,分别以和为边在线段的同侧作等边三角形和等边三角形,连结和,相交于点,连结,(1)求证:;(2)求的大小;(3)如图2,固定不动,保持的形状和大小不变,将绕着点旋转(和不能重叠),求的大小.26.(10分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.
参考答案一、选择题(每小题3分,共30分)1、A【详解】作DE⊥AB于E,∵AB=10,S△ABD=15,∴DE=3,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=CD=3,故选A.2、C【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】如图,连接AD.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得:AD=6(cm).∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).故选C.【点睛】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.3、C【分析】利用等边三角形的性质得到∠B1A1A2=60°,A1B1=A1A2,则可计算出∠A1B1O=30°,所以A1B1=A1A2=OA1,利用同样的方法得到A2B2=A2A3=OA2=2OA1,A3B3=A3A4=22•OA1,A4B4=A4A5=23•OA1,利用此规律得到A2019B2019=A2019A2020=3•OA1.【详解】∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,A1B1=A1A2.∵∠MON=30°,∴∠A1B1O=30°,∴A1B1=OA1,∴A1B1=A1A2=OA1,同理可得A2B2=A2A3=OA2=2OA1,∴A3B3=A3A4=OA3=2OA2=22•OA1,A4B4=A4A5=OA4=2OA3=23•OA1,…,∴A2019B2019=A2019A2020=OA2019=3•OA1=3.故选:C.【点睛】本题考查了规律型:图形的变化类.首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.也考查了等边三角形的性质.4、B【解析】这句话中,15个字母a出现了2次,所以字母“a”出现的频率是.故选B.5、B【解析】根据△ABC的面积=△AOB的面积+△BOC的面积+△AOC的面积即可求解.【详解】解:在直角△ABC中,BC=4m,AC=3m.则∵中心O到三条支路的距离相等,设距离是r.
∵△ABC的面积=△AOB的面积+△BOC的面积+△AOC的面积∴∴3×4=5r+4r+3r
∴r=1.
故O到三条支路的管道总长是1×3=3m.
故选:B.【点睛】此题主要考查了三角形的内心的性质,三角形内心到三角形的各边的距离相等,利用三角形的面积的关系求解是解题的关键.6、C【解析】根据题中“属于分解因式的是”可知,本题考查多项式的因式分解的判断,根据因式分解的概念,运用因式分解是把多项式分解成若干个整式相乘的形式,进行分析判断.【详解】A.属于整式乘法的变形.B.不符合因式分解概念中若干个整式相乘的形式.C.运用提取公因式法,把多项式分解成了5x与(2x-1)两个整式相乘的形式.D.不符合因式分解概念中若干个整式相乘的形式.故应选C【点睛】本题解题关键:理解因式分解的概念是把多项式分解成若干个整式相乘的形式,注意的是相乘的形式.7、D【分析】先根据平移规律得出平移后的直线解析式,再把点A(3,3)代入,即可求出a的值.【详解】解:将直线y=-x+a向下平移1个单位长度为:y=-x+a−1.把点A(3,3)代入y=-x+a−1,得-3+a−1=3,解得a=2.故选:D.【点睛】本题考查了一次函数图象的平移,一次函数图象的平移规律是:①y=kx+b向左平移m个单位,是y=k(x+m)+b,向右平移m个单位是y=k(x-m)+b,即左右平移时,自变量x左加右减;②y=kx+b向上平移n个单位,是y=kx+b+n,向下平移n个单位是y=kx+b-n,即上下平移时,b的值上加下减.8、B【分析】根据对称的性质可得∠MEF的度数,再由是的平分线,可算出∠MEN的度数.【详解】解:由题意可得:∠B=90°,∵∠BFE=60°,∴∠BEF=30°,∵点和点关于对称,∴∠BEF=∠MEF=30°,∴∠MEC=180-30°×2=120°,又∵是的平分线,∴∠MEN=120÷2=60°.故选B.【点睛】本题考查了轴对称的性质和角平分线的性质,根据已知角利用三角形内角和、角平分线的性质计算相关角度即可,难度不大.9、B【分析】根据分式乘除运算法则对原式变形后,约分即可得到结果.【详解】解:==.故选:B.【点睛】本题考查分式的乘除法,熟练掌握运算法则是解本题的关键.10、A【分析】根据关于x轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数,即可得出结论.【详解】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3)故选A.【点睛】此题考查的是求一个点关于x轴对称点的坐标,掌握关于x轴对称的两点坐标关系是解决此题的关键.二、填空题(每小题3分,共24分)11、【解析】先求出点A的坐标,然后根据旋转的性质求出旋转后点A的对应点的坐标,继而根据平移的性质即可求得答案.【详解】∵点的坐标为,,∴点的坐标为,如图所示,将先绕点逆时针旋转90°,则点的坐标为,
再向左平移3个单位长度,则变换后点的对应点坐标为,故答案为:.
【点睛】本题考查了平移变换、旋转变换,熟练掌握平移的性质以及旋转的性质是解题的关键.12、5<<13【分析】设这根木棒的长度为,根据在三角形中,任意两边之和大于第三边,得<4+9=13,任意两边之差小于第三边,得>9-4=5,所以这根木棒的长度为5<<13.【详解】解:这根木棒的长度的取值范围是9-4<<9+4,即5<<13.故答案为5<<13.【点睛】本题考查了三角形得三边关系.在三角形中,任意两边之和大于第三边,任意两边之差小于第三边.13、.【分析】根据旋转的性质可得,,然后根据等腰三角形两底角相等求出,再利用直角三角形两锐角互余列式计算即可得解.【详解】绕点逆时针旋转得到,,,在中,,,,.故答案为:.【点睛】本题考查了旋转的性质,等腰三角形的性质,直角三角形的两锐角互余,比较简单,熟记旋转变换只改变图形的位置不改变图形的形状与大小得到等腰三角形是解题的关键.14、140°.【解析】∠C的外角=∠A+∠B=60°+80°=140°.故答案为140°.15、①③④⑤【分析】根据三角形中线的定义可得BD=CD,根据等底等高的三角形的面积相等判断出①正确;利用“SAS”证明③△BDF≌△CDE正确,根据全等三角形对应边相等,证明⑤正确,根据全等三角形对应角相等得∠F=∠DEF,再根据内错角相等,两直线平行可得④正确.【详解】解:由题意得BD=CD,点A到BD,CD的距离相等∴△ABD和△ACD的面积相等,故①正确;虽然已知AD为△ABC的中线,但是推不出来∠BAD和∠CAD一定相等,故②不正确;在△BDF和△CDE中,∴△BDF≌△CDE,故③正确;∴CE=BF,故⑤正确;∴∠F=∠DEF∴BF∥CE,故④正确;故答案为①③④⑤.【点睛】本题考查了全等三角形的判定与性质,等底等高的三角形面积相等,熟练掌握三角形判定的方法并准确识图是解题的关键.全等三角形的判定:SSS;SAS;ASA;AAS;H.L;全等三角形的性质:全等三角形对应边相等,对应角相等.16、1【分析】由长方形ABCD沿AE折叠后,D点恰与BC边上的F重合,可得AF=AD=10,DE=EF,然后设EC=x,则DE=EF=CD−EC=8−x,首先在Rt△ABF中,利用勾股定理求得BF的长,继而可求得CF的长,然后在Rt△CEF中,由勾股定理即可求得方程:x2+42=(8−x)2,解此方程即可求得答案.【详解】∵四边形ABCD是长方形,∴∠B=∠C=90,AD=BC=10,CD=AB=8,∵△ADE折叠后得到△AFE,∴AF=AD=10,DE=EF,设EC=x,则DE=EF=CD−EC=8−x,∵在Rt△ABF中,AB2+BF2=AF2,∴82+BF2=102,∴BF=6,∴CF=BC−BF=10−6=4,∵在Rt△EFC中,EC2+CF2=EF2,∴x2+42=(8−x)2,解得:x=3,∴DE=1故答案为1.【点睛】此题考查了折叠的性质、矩形的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.17、m(m+4)【解析】直接提取公式因进行因式分解即可【详解】m2+4m=m(m+4).故答案为:m(m+4).【点睛】本题考查提取公因式方法进行因式分解,找到公因式是解题关键18、360°【解析】如图所示,根据三角形外角的性质可得,∠1+∠5=∠8,∠4+∠6=∠7,根据四边形的内角和为360°,可得∠2+∠3+∠7+∠8=360°,即可得∠1+∠2+∠3+∠4+∠5+∠6=360°.点睛:本题考查的知识点:(1)三角形的内角和外角之间的关系:三角形的外角等于与它不相邻的两个内角和;(2)四边形内角和定理:四边形内角和为360°.三、解答题(共66分)19、(1)见解析;(2)见解析;A1(﹣2,﹣1),B1(3,﹣1),C1(2,﹣3);(3)∠C=90°.【分析】(1)根据坐标确定位置即可;(2)首先确定A,B,C关于x轴对称的点的位置,再连结即可;(3)利用勾股定理和勾股定理逆定理进行计算即可.【详解】解:(1)如图所示:(2)如图所示:A1(﹣2,﹣1),B1(3,﹣1),C1(2,﹣3)(3)∵CB2=22+12=5,AC2=42+22=20,AB2=52=25,∴CB2+AC2=AB2,∴∠C=90°.【点睛】本题主要考查了作图—轴对称变换,勾股定理以及勾股定理逆定理,掌握画轴对称图形的方法是解答本题的关键.20、(1)答案见解析;(2)(0,0).【分析】(1)根据网格结构找出点A、B、C关于y轴的对称点的位置,然后顺次连接即可;
(2)找出点C关于x轴的对称点C′,连接AC′与x轴的交点即为所求的点P,根据直线AC'的解析式即可得解.【详解】(1)如图所示,△A1B1C1即为所求;(2)如图所示,作点C关于x轴的对称点C'(﹣2,﹣2),连接AC',交x轴于P,由A、C'的坐标可得AC'的解析式为y=x,当y=0时,x=0,∴点P的坐标为(0,0).故答案为:(0,0).【点睛】此题考查轴对称变换作图,最短路线,熟练掌握网格结构,准确找出对应点的位置是解题的关键.21、1.【分析】先根据含的直角三角形求BC,再利用勾股定理求出AC,进而求出PC,最后利用勾股定理、含的直角三角形和方程思想求出PE.【详解】解:∵∴∵,∴∴在中,∵点为的中点∴∵,∴∵与互为对顶角∴=∴在中,∵在中,∴∴∴.【点睛】本题考查勾股定理和含的直角三角形,找清楚已知条件中的边长与要求边长的联系是解题关键.特殊角是转化边的有效工具,应该熟练掌握.22、(1)图见解析,点C的坐标为(3,3);(2)图见解析,B1的坐标为(-2,-4)【分析】(1)直接利用已知点建立平面直角坐标系进而得出答案;(2)利用坐标之间的关系得出△A1B1C1各顶点位置,进而得出答案.【详解】解:(1)平面直角坐标系如图所示.点C的坐标为(3,3).(2)△A1B1C1如图所示.△A1B1C1与△ABC关于x轴对称.点B的对应点B1的坐标为(-2,-4).【点睛】此题主要考查了轴对称变换,正确得出各对应点位置是解题关键.23、【分析】根据乘法分配律的逆运算进行计算,即可得到答案.【详解】解:===;【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则进行解题.24、(1)①k+1;②见解析;(2)y=x+45°,理由见解析;(3)【分析】(1)①先根据AE与CE之比求出△ADE的面积,进而求出ADC的面积,而D中BC中点,所以△ABD面积与△ADC面积相等;②延长BF至R,使FR=BF,连接RC,注意到D是BC中点,过B过B点作BG∥AC交EF于G.得,再利用等腰三角形性质和判定即可解答;(2)设∠2=α.则∠3=∠1=2∠2=2α,根据平行线性质及三角形外角性质可得∠4=α,再结合三角形内角和等于180°联立方程即可解答;(3)分别作P点关于FA、FD的对称点P'、P'',则PQ+QM+PM=P'Q+QM+MP“≥P'P''=FP,当FP垂直AD时取得最小值,即最小值就是AD边上的高,而AD已知,故只需求出△ADF的面积即可,根据AE=kEC,AE=AF,CE=BF,可以将△ADF的面积用k表示出来,从而问题得解.【详解】解:(1)①∵AE=kCE,∴S△DAE=kS△DEC,∵S△DEC=1,∴S△DAE=k,∴S△ADC=S△DAE+S△DEC=k+1,∵D为BC中点,∴S△ABD=S△ADC=k+1.②如图1,过B点作BG∥AC交EF于G.∴,在△BGD和△CED中,,∴(ASA),∴BG=CE,又∵BF=CE,∴BF=BG,∴,∴∴AF=AE,即△AEF是等腰三角形.(2)如图2,设AH与BC交于点N,∠2=α.则∠3=∠1=2∠2=2α,∵AH∥BG,∴∠CNH=∠ANB=∠3=2α,∵∠CNH=∠2+∠4,∴2α=α+∠4,∴∠4=α,∵∠4=∠BCG﹣∠2,∴∠BCG=∠2+∠4=2α,在△BGC中,,即:,在△ABC中,,即:,联立消去得:y=x+45°.(3)如图3,作P点关于FA、FD的对称点P'、P'',连接P'Q、P'F、PF、P''M、P''F、P'P'',则FP'=FP=FP'',PQ=P'Q,PM=P''M,∠P'FQ=∠PFQ,∠P''FM=∠PFM,∴∠P'FP''=2∠AFD,∵∠G=100°,∴∠BAC=∠G+45°=120°,∵AE=AF,∴∠AFD=30°,∴∠P'FP''=2∠AFD=60°,∴△FP'P''是等边三角形,∴P'P''=FP'=FP,∴PQ+QM+PM=P'Q+QM+MP''≥P'P''=FP,当且仅当P'、Q、M、P''四点共线,且FP⊥AD时,△PQM的周长取得最小值.,,,,,当时,,的周长最小值为.【点睛】本题是三角形综合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《简·爱》读书笔记500字10篇
- 2021员工个人工作总结5篇
- 在企业的实习报告模板五篇
- 敬老院志愿活动个人总结五篇
- 庆祝中国人民警察节心得作文
- 电视台实习报告模板集合10篇
- 2024年新型企业食堂租赁及运营合作协议书3篇
- 小学语文教师工作评价
- “两个结合”视域下课程思政融入通识课的路径探索
- 电梯维修工培训资料
- 部编版2023-2024学年六年级上册语文期末测试试卷(含答案)2
- 应用PDCA提高医疗安全不良事件的上报率
- 2024年资格考试-高校教师岗前培训考试近5年真题集锦(频考类试题)带答案
- 新闻宣传报道先进单位(集体)申报材料
- 指标权重优化研究
- Unit1-3(单元测试)-2024-2025学年人教PEP版(2024)英语三年级上册
- 浙江名校新2025届高一上数学期末学业水平测试试题含解析
- 【人教版】《劳动教育》五上 劳动项目三《制作扇子》 课件
- 《逻辑的力量-采用合理的论证方法》教学设计 2023-2024学年统编版高中语文选择性必修上册
- 中高层管理人员薪酬激励制度
- 工程估价谭大璐课程设计
评论
0/150
提交评论