版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河北省邯郸市永区八年级数学第一学期期末监测模拟试题题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.估计的值在()A.2到3之间 B.3到4之间 C.4到5之间 D.5到6之间2.已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为()A.1 B.﹣1 C.2 D.﹣23.如图,已知和都是等边三角形,且、、三点共线.与交于点,与交于点,与交于点,连结.以下五个结论:①;②;③;④是等边三角形;⑤.其中正确结论的有()个A.5 B.4 C.3 D.24.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144° B.84° C.74° D.54°5.如图,坐标平面上有P,Q两点,其坐标分别为(5,a),(b,7),根据图中P,Q两点的位置,则点(6-b,a-10)在()A.第一象限 B.第二象限C.第三象限 D.第四象限6.下列条件不可以判定两个直角三角形全等的是()A.两条直角边对应相等 B.两个锐角对应相等C.一条直角边和斜边对应相等 D.一个锐角和锐角所对的直角边对应相等7.某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数15321则这个队队员年龄的众数和中位数分别是()A.15,16 B.15,15 C.15,15.5 D.16,158.江永女书诞生于宋朝,是世界上唯一一种女性文字,主要书写在精制布面、扇面、布帕等物品上,是一种独特而神奇的文化现象.下列四个文字依次为某女书传人书写的“女书文化”四个字,基本是轴对称图形的是()A.B.C.D.9.如图,在△ABC中,AD为BC边上的中线,DE为△ABD中AB边上的中线,△ABC的面积为6,则△ADE的面积是()A.1 B. C.2 D.10.一次函数上有两点(,),(,),则下列结论成立的是()A. B. C. D.不能确定11.等腰三角形的底角等于,则该等腰三角形的顶角度数为()A. B. C.或 D.或12.一个多边形的每一个外角都等于36,则该多边形的内角和等于()A.1080° B.900° C.1440° D.720°二、填空题(每题4分,共24分)13.已知A地在B地的正南方3km处,甲、乙两人同时分别从A、B两地向正北方向匀速直行,他们与A地的距离S(km)与所行时间t(h)之间的函数关系如图所示,当他们行驶3h时,他们之间的距离为______km.14.在中,,为直线上一点,为直线上一点,,设,.(1)如图1,若点在线段上,点在线段上,则,之间关系式为__________.(2)如图2,若点在线段上,点在延长线上,则,之间关系式为__________.15.某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图如图,可计算出该店当月销售出水果的平均价格是______元16.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,AK=BN,若∠MKN=44°,则∠P的度数为________.17.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是__千米.18.计算:的结果是________.三、解答题(共78分)19.(8分)如图,点,过点做直线平行于轴,点关于直线对称点为.(1)求点的坐标;(2)点在直线上,且位于轴的上方,将沿直线翻折得到,若点恰好落在直线上,求点的坐标和直线的解析式;(3)设点在直线上,点在直线上,当为等边三角形时,求点的坐标.20.(8分)如图所示,已知一次函数的图象与轴,轴分别交于点、.以为边在第一象限内作等腰,且,.过作轴于.的垂直平分线交与点,交轴于点.(1)求点的坐标;(2)在直线上有点,且点与点位于直线的同侧,使得,求点的坐标.(3)在(2)的条件下,连接,判断的形状,并给予证明.21.(8分)在平面直角坐标中,四边形OCNM为矩形,如图1,M点坐标为(m,0),C点坐标为(0,n),已知m,n满足.(1)求m,n的值;(2)①如图1,P,Q分别为OM,MN上一点,若∠PCQ=45°,求证:PQ=OP+NQ;②如图2,S,G,R,H分别为OC,OM,MN,NC上一点,SR,HG交于点D.若∠SDG=135°,,则RS=______;(3)如图3,在矩形OABC中,OA=5,OC=3,点F在边BC上且OF=OA,连接AF,动点P在线段OF是(动点P与O,F不重合),动点Q在线段OA的延长线上,且AQ=FP,连接PQ交AF于点N,作PM⊥AF于M.试问:当P,Q在移动过程中,线段MN的长度是否发生变化?若不变求出线段MN的长度;若变化,请说明理由.22.(10分)问题原型:如图①,在锐角△ABC中,∠ABC=45°,AD⊥BC于点D,在AD上取点E,使DE=CD,连结BE.求证:BE=AC.问题拓展:如图②,在问题原型的条件下,F为BC的中点,连结EF并延长至点M,使FM=EF,连结CM.(1)判断线段AC与CM的大小关系,并说明理由.(2)若AC=,直接写出A、M两点之间的距离.23.(10分)阅读材料:如图1,中,点,在边上,点在上,,,,延长,交于点,,求证:.分析:等腰三角形是一种常见的轴对称图形,几何试题中我们常将一腰所在的三角形沿着等腰三角形的对称轴进行翻折,从而构造轴对称图形.①小明的想法是:将放到中,沿等腰的对称轴进行翻折,即作交于(如图2)②小白的想法是:将放到中,沿等腰的对称轴进行翻折,即作交的延长线于(如图3)经验拓展:等边中,是上一点,连接,为上一点,,过点作交的延长线于点,,若,,求的长(用含,的式子表示).24.(10分)已知一次函数,它的图像经过,两点.(1)求与之间的函数关系式;(2)若点在这个函数图像上,求的值.25.(12分)(1)计算:;(2)分解因式:.26.甲、乙两地相距120千米,一辆大巴车从甲地出发,行驶1小时后,一辆小汽车从甲地出发,小汽车和大巴车同时到达到乙地,已知小汽车的速度是大巴车的2倍,求大巴车和小汽车的速度.
参考答案一、选择题(每题4分,共48分)1、B【分析】利用”夹逼法“得出的范围,继而也可得出+1的范围.【详解】∵4<6<9,∴,即,∴,故选B.2、A【解析】试题解析:∵是关于x、y的方程4kx-3y=-1的一个解,
∴代入得:8k-9=-1,
解得:k=1,
故选A.3、A【分析】根据等边三角形的性质、全等三角形的判定与性质对各结论逐项分析即可判定.【详解】解:①∵△ABC和△CDE为等边三角形。∴AC=BC,CD=CE,∠BCA=∠DCE=60°∴∠ACD=∠BCE在△ACD和△BCE中,AC=BC,∠ACD=∠BCE,CD=CE∴△ACD≌△BCE(SAS)∴AD=BE,∠ADC=∠BEC,则①正确;②∵∠ACB=∠DCE=60°∴∠BCD=60°∴△DCE是等边三角形∴∠EDC=60°=∠BCD∴BC//DE∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,②正确;③∵∠DCP=60°=∠ECQ在△CDP和△CEQ中,∠ADC=∠BEC,CD=CE,∠DCP=∠ECQ∴△CDP≌△CEQ(ASA)∴CР=CQ∴∠CPQ=∠CQP=60°,∴△PC2是等边三角形,③正确;④∠CPQ=∠CQP=60°∴∠QPC=∠BCA∴PQ//AE,④正确;⑤同④得△ACP≌△BCQ(ASA)∴AP=BQ,⑤正确.故答案为A.【点睛】本题主要考查了等边三角形的性质、全等三角形的判定与性质等知识点,熟练掌握全等三角形的判定与性质是解答本题的关键.4、B【解析】正五边形的内角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六边形的内角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故选B.5、D【解析】∵(5,a)、(b,7),
∴a<7,b<5,
∴6-b>0,a-10<0,
∴点(6-b,a-10)在第四象限.
故选D.6、B【分析】根据全等三角形的判定定理:AAS、SAS、ASA、SSS及直角三角形的判定定理HL对4个选项逐个分析,然后即可得出答案.【详解】解:A、两条直角边对应相等,可利用全等三角形的判定定理SAS来判定两直角三角形全等,故本选项正确;
B、两个锐角对应相等,再由两个直角三角形的两个直角相等,AAA没有边的参与,所以不能判定两个直角三角形全等;故本选项错误;
C、一条直角边和它所对的锐角对应相等,可利用全等三角形的判定定理ASA来判定两个直角三角形全等;故本选项正确;
D、一个锐角和锐角所对的直角边对应相等,可以利用全等三角形的判定定理ASA或AAS来判定两个直角三角形全等;故本选项正确;
故选:B.【点睛】本题考查了直角全等三角形的判定.注意,判定两个三角形全等时,必须有边的参与.7、C【分析】由题意直接根据众数和中位数的定义求解可得.【详解】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,∴中位数为=15.5岁,故选:C.【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.8、A【解析】试题解析:选项A是轴对称图形,选项B、C、D都不是轴对称图形,判断一个图形是不是轴对称图形,关键在于看是否存在一条直线,使得这个图形关于这条直线对称.故选A.考点:轴对称图形.9、B【分析】根据三角形的中线的性质,得△ADE的面积是△ABD的面积的一半,△ABD的面积是△ABC的面积的一半,由此即可解决问题.【详解】∵AD是△ABC的中线,∴S△ABD=S△ABC=1.∵DE为△ABD中AB边上的中线,∴S△ADE=S△ABD=.故选:B.【点睛】此题考查三角形的面积,三角形的中线的性质,解题的关键是掌握三角形的中线把三角形的面积分成了相等的两部分.10、A【分析】首先判断出一次函数的增减性,然后根据A,B点的横坐标可得答案.【详解】解:∵一次函数中,∴y随x的增大而减小,∵2<3,∴,故选:A.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的增减性与k的关系是解题的关键.11、B【分析】根据等腰三角形的性质及三角形的内角和直接求出顶角即可.【详解】解:∵三角形为等腰三角形,且底角为50°,∴顶角=180°﹣50°×2=80°.故选:B.【点睛】本题考查等腰三角形的性质,三角形内角和定理,题目比较简单,理解等腰三角形两个底角相等是解题关键.12、C【解析】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故选C.二、填空题(每题4分,共24分)13、1.5【详解】因为甲过点(0,0),(2,4),所以S甲=2t.因为乙过点(2,4),(0,3),所以S乙=t+3,当t=3时,S甲-S乙=6-=14、【分析】(1)利用等腰三角形的性质和三角形的内角和即可得出结论;(2)当点E在CA的延长线上,点D在线段BC上,同(1)的方法即可得出结论.【详解】(1)设∠ABC=x,∠AED=y,∵,,∴∠ACB=∠ABC,∠AED=∠ADE∴∠ACB=x,∠ADE=y,在△DEC中,∵∠AED=∠ACB+∠EDC,∴y=β+x,在△ABD中,∵∠ADC=∠BAD+∠ABC,∠ADC=∠ADE+∠EDC=∠AED+∠EDC,∴α+x=y+β=β+x+β,∴α=2β;故答案为:α=2β;(2)当点E在CA的延长线上,点D在线段BC上,设∠ABC=x,∠ADE=y,∵,,∴∠ACB=∠ABC,∠AED=∠ADE,∴∠ACB=x,∠AED=y,在△ABD中,∵∠ADC=∠BAD+∠ABC,∠ADC=∠EDC-∠ADE,∴x+α=β-y,在△DEC中,∵∠ECD+∠CED+∠EDC=180°,∴x+y+β=180°,∴α=2β-180°;故答案为α=2β-180°.【点睛】此题主要考查了等腰三角形的性质,三角形的内角和定理,解本题的关键是利用三角形的内角和定理得出等式.15、【解析】根据加权平均数的计算方法,分别用单价乘以相应的百分比,计算即可得解.【详解】11×60%+18×15%+24×25%=15.1(元),即该店当月销售出水果的平均价格是15.1元,故答案为15.1.【点睛】本题考查扇形统计图及加权平均数,熟练掌握扇形统计图直接反映部分占总体的百分比大小及加权平均数的计算公式是解题的关键.16、92°.【分析】根据等腰三角形的性质得到∠A=∠B,证明△AMK≌△BKN,得到∠AMK=∠BKN,根据三角形的外角的性质求出∠A=∠MKN=44°,根据三角形内角和定理计算即可.【详解】解:∵PA=PB,
∴∠A=∠B,
在△AMK和△BKN中,∴△AMK≌△BKN,
∴∠AMK=∠BKN,
∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,
∴∠A=∠MKN=44°,
∴∠P=180°-∠A-∠B=92°,故答案为92°.【点睛】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.17、1.1.【分析】首先设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b,然后再把(40,2)(60,0)代入可得关于k、b的方程组,解出k、b的值,进而可得函数解析式,再把t=41代入即可.【详解】设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b.∵图象经过(40,2)(60,0),∴,解得:,∴y与t的函数关系式为y=﹣,当t=41时,y=﹣×41+6=1.1.故答案为1.1.【点睛】本题主要考查了一次函数的应用,关键是正确理解题意,掌握待定系数法求出函数解析式.18、【分析】根据二次根式的乘法公式和积的乘方的逆用计算即可.【详解】解:====故答案为:【点睛】此题考查的是二次根式的运算,掌握二次根式的乘法公式和积的乘方的逆用是解决此题的关键.三、解答题(共78分)19、(1)(3,0);(2)A(1,);直线BD为;(3)点P的坐标为(,)或(,).【分析】(1)根据题意,点B、C关于点M对称,即可求出点C的坐标;(2)由折叠的性质,得AB=CB,BD=AD,根据勾股定理先求出AM的长度,设点D为(1,a),利用勾股定理构造方程,即可求出点D坐标,然后利用待定系数法求直线BD.(3)分两种情形:如图2中,当点P在第一象限时,连接BQ,PA.证明点P在AC的垂直平分线上,构建方程组求出交点坐标即可.如图3中,当点P在第三象限时,同法可得△CAQ≌△CBP,可得∠CAQ=∠CBP=30°,构建方程组解决问题即可.【详解】解:(1)根据题意,∵点B、C关于点M对称,且点B、M、C都在x轴上,又点B(),点M(1,0),∴点C为(3,0);(2)如图:由折叠的性质,得:AB=CB=4,AD=CD=BD,∵BM=2,∠AMB=90°,∴,∴点A的坐标为:(1,);设点D为(1,a),则DM=a,BD=AD=,在Rt△BDM中,由勾股定理,得,解得:,∴点D的坐标为:(1,);设直线BD为,则,解得:,∴直线BD为:;(3)如图2中,当点P在第一象限时,连接BQ,PA.∵△ABC,△CPQ都是等边三角形,∴∠ACB=∠PCQ=60°,∴∠ACP=∠BCQ,∵CA=CB,CP=CQ,∴△ACP≌△BCQ(SAS),∴AP=BQ,∵AD垂直平分线段BC,∴QC=QB,∴PA=PC,∴点P在AC的垂直平分线上,由,解得,∴P(,).如图3中,当点P在第三象限时,同法可得△CAQ≌△CBP,
∴∠CAQ=∠CBP=30°,∵B(-1,0),∴直线PB的解析式为,由,解得:,∴P(,).【点睛】本题属于一次函数综合题,考查了一次函数的性质,全等三角形的判定和性质,等边三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建一次函数,利用方程组确定交点坐标,属于中考压轴题.20、(1);(2);(3)等腰直角三角形,证明见详解.【分析】(1)证,,.(2)由可知作的一半的面积与相等,可作一条过AC的中点的平行于AB的直线将会交于M点,证,,.(3)E、G分别为的中点,知,,,为矩形,,,,可判断,即可得的形状.【详解】(1)∵的图象与轴、轴分别交于点、,∴可得,∵,∴,∵,∴,在与中,,∴;∴,;∴;∴(2)如下图作一条过AC的中点H点的平行于AB的直线将会交于一点,由A、C点可得H点坐标,∵,∴,∴与的高相等,即过H点的平行于AB的直线将会交于M点∵,∴∵,∴,∴,如下图过H点作的垂线交于I点,,得,,在与中,,∴;∴,∴;∴(3)∵E、G分别为的中点,∴,∵,∴为矩形;∴,,∵,,,∴,,得,∴为等腰直角三角形;【点睛】一次函数、三角形全等证明、矩形证明这些跨章节知识点的应用,需要对知识的融会贯通.21、(1)m=1,n=1;(2)①证明见解析;②;(3)MN的长度不会发生变化,它的长度为.【分析】(1)利用非负数的性质即可解决问题.(2)①作辅助线,构建两个三角形全等,证明△COE≌△CNQ和△ECP≌△QCP,由PE=PQ=OE+OP,得出结论;②作辅助线,构建平行四边形和全等三角形,可得▱CSRE和▱CFGH,则CE=SR,CF=GH,证明△CEN≌△CE′O和△E′CF≌△ECF,得EF=E′F,设EN=x,在Rt△MEF中,根据勾股定理列方程求出EN的长,再利用勾股定理求CE,则SR与CE相等,所以SR=;(3)在(1)的条件下,当P、Q在移动过程中线段MN的长度不会发生变化,求出MN的长即可;如图4,过P作PD∥OQ,证明△PDF是等腰三角形,由三线合一得:DM=FD,证明△PND≌△QNA,得DN=AD,则MN=AF,求出AF的长即可解决问题.【详解】解:(1)∵,又∵≥0,|1﹣m|≥0,∴n﹣1=0,1﹣m=0,∴m=1,n=1.(2)①如图1中,在PO的延长线上取一点E,使NQ=OE,∵CN=OM=OC=MN,∠COM=90°,∴四边形OMNC是正方形,∴CO=CN,∵∠EOC=∠N=90°,∴△COE≌△CNQ(SAS),∴CQ=CE,∠ECO=∠QCN,∵∠PCQ=41°,∴∠QCN+∠OCP=90°﹣41°=41°,∴∠ECP=∠ECO+∠OCP=41°,∴∠ECP=∠PCQ,∵CP=CP,∴△ECP≌△QCP(SAS),∴EP=PQ,∵EP=EO+OP=NQ+OP,∴PQ=OP+NQ.②如图2中,过C作CE∥SR,在x轴负半轴上取一点E′,使OE′=EN,得▱CSRE,且△CEN≌△CE′O,则CE=SR,过C作CF∥GH交OM于F,连接FE,得▱CFGH,则CF=GH=,∵∠SDG=131°,∴∠SDH=180°﹣131°=41°,∴∠FCE=∠SDH=41°,∴∠NCE+∠OCF=41°,∵△CEN≌△CE′O,∴∠E′CO=∠ECN,CE=CE′,∴∠E′CF=∠E′CO+∠OCF=41°,∴∠E′CF=∠FCE,∵CF=CF,∴△E′CF≌△ECF(SAS),∴E′F=EF在Rt△COF中,OC=1,FC=,由勾股定理得:OF==,∴FM=1﹣=,设EN=x,则EM=1﹣x,FE=E′F=x+,则(x+)2=()2+(1﹣x)2,解得:x=,∴EN=,由勾股定理得:CE==,∴SR=CE=.故答案为.(3)当P、Q在移动过程中线段MN的长度不会发生变化.理由:如图3中,过P作PD∥OQ,交AF于D.∵OF=OA,∴∠OFA=∠OAF=∠PDF,∴PF=PD,∵PF=AQ,∴PD=AQ,∵PM⊥AF,∴DM=FD,∵PD∥OQ,∴∠DPN=∠PQA,∵∠PND=∠QNA,∴△PND≌△QNA(AAS),∴DN=AN,∴DN=AD,∴MN=DM+DN=DF+AD=AF,∵OF=OA=1,OC=3,∴CF=,∴BF=BC﹣CF=1﹣4=1,∴AF=,∴MN=AF=,∴当P、Q在移动过程中线段MN的长度不会发生变化,它的长度为.【点睛】本题是四边形与动点问题的综合题,考查了矩形、正方形、全等三角形等图形的性质与判定,灵活运用所学知识是解答本题的关键.22、问题原型:见解析;问题拓展:(1)AC=CM,理由见解析;(2)AM=.【解析】根据题意证出△BDE≌△ADC即可得出答案;证出△BEF≌△CMF即可得出答案;(2)连接AM,求出∠ACM=90°,即可求出A【详解】问题原型:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵∠ABC=45°,∴∠BAD=45°,∴∠ABC=∠BAD,∴AD=BD,在△BDE和△ADC中,∵,∴△BDE≌△ADC(SAS),∴BE=AC,问题拓展:(1)AC=CM,理由:∵点F是BC中点,∴BF=CF,在△BEF和△CMF中,∵,∴△BEF≌△CMF(SAS),∴BE=CM,由(1)知,BE=AC,∴AC=CM;(2)如图②,连接AM,由(1)知,△BDE≌△ADC,∴∠BED=∠ACD,由(2)知,△BEF≌△CMF,∴∠EBF=∠BCM,∴∠ACM=∠ACD+∠BCM=∠BED+∠EBF=90°,∵AC=CM,∴AM=AC=.【点睛】本题考查的知识点是全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.23、①
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流配送司机薪酬方案
- 光学仪器工厂租赁合同样本
- 电力公司用户数据保密制度
- 城市绿化养护招投标合同审查
- 水利教师聘用合同模板
- 环保工程库房施工合同
- 油气管道施工员劳动合同样本
- 购物中心设施安装物业合同
- 医疗卫生评审员管理办法
- 2025版教育机构安全责任保险合同2篇
- 2024届甘肃省平凉市静宁县英语九年级第一学期期末教学质量检测模拟试题含解析
- 沧源永弄华能100MW茶光互补光伏发电项目环评报告
- 仓储业行业SWOT分析
- 辅导员工作汇报课件
- 公司金融学张德昌课后参考答案
- 商务英语口语与实训学习通课后章节答案期末考试题库2023年
- DB3302-T 1015-2022 城市道路清扫保洁作业规范
- 手术室提高患者术中保温措施的执行率PDCA课件
- 报刊杂志发放登记表
- 大学物理(下)(太原理工大学)知到章节答案智慧树2023年
- 布袋除尘器项目可行性分析报告
评论
0/150
提交评论