2025届黑龙江省牡丹江管理局北斗星协会数学八上期末质量检测试题含解析_第1页
2025届黑龙江省牡丹江管理局北斗星协会数学八上期末质量检测试题含解析_第2页
2025届黑龙江省牡丹江管理局北斗星协会数学八上期末质量检测试题含解析_第3页
2025届黑龙江省牡丹江管理局北斗星协会数学八上期末质量检测试题含解析_第4页
2025届黑龙江省牡丹江管理局北斗星协会数学八上期末质量检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届黑龙江省牡丹江管理局北斗星协会数学八上期末质量检测试题测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在等边三角形中,分别是的中点,点是线段上的一个动点,当的长最小时,点的位置在()A.点处 B.的中点处 C.的重心处 D.点处2.已知,现把小棒依次摆放在两射线之间,并使小棒在两射线上,从开始,用等长的小棒依次向右摆放,其中为第1根小棒,且,若只能摆放9根小棒,则的度数可以是()A.6° B.7° C.8° D.9°3.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有()A.1个 B.2个 C.3个 D.4个4.如图,,分别是△ABC的高和角平分线,且,,则的度数为()A. B. C. D.5.(2011贵州安顺,4,3分)我市某一周的最高气温统计如下表:最高气温(℃)

25

26

27

28

天数

1

1

2

3

则这组数据的中位数与众数分别是()A.27,28 B.27.5,28 C.28,27 D.26.5,276.如图,在四边形ABCD中,,,,.分别以点A,C为圆心,大于长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A. B.4 C.3 D.7.下列各式:,,,,其中分式共有几个().A.1 B.2 C.3 D.48.下列命题是假命题的是A.全等三角形的对应角相等 B.若||=-,则a>0C.两直线平行,内错角相等 D.只有锐角才有余角9.如图,的角平分线与外角的平分线相交于点若则的度数是()A. B. C. D.10.要使分式有意义,则的取值应满足()A. B. C. D.二、填空题(每小题3分,共24分)11.若正多边形的每一个内角为,则这个正多边形的边数是__________.12.若a﹣b+6的算术平方根是2,2a+b﹣1的平方根是±4,则a﹣5b+3的立方根是_____.13.如图,中,,,,、分别是、上的动点,则的最小值为______.14.计算(x-a)(x+3)的结果中不含x的一次项,则a的值是________.15.如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是________.16.若x=﹣1,则x3+x2-3x+2020的值为____________.17.已知直线y=kx+b与x轴正半轴相交于点A(m+4,0),与y轴正半轴相交于点B(0,m),点C在第四象限,△ABC是以AB为斜边的等腰直角三角形,则点C的坐标是______.18.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为_____.三、解答题(共66分)19.(10分)某旅行团去景点游览,共有成人和儿童20人,且旅行团中儿童人数多于成人.景点规定:成人票40元/张,儿童票20元/张.(1)若20人买门票共花费560元,求成人和儿童各多少人?(2)景区推出“庆元旦”优惠方案,具体方案为:方案一:购买一张成人票免一张儿童票费用;方案二:成人票和儿童票都打八折优惠;设:旅行团中有成人a人,旅行团的门票总费用为W元.①方案一:_____________________;方案二:____________________;②试分析:随着a的变化,哪种方案更优惠?20.(6分)在△ABC中,∠BAC=41°,CD⊥AB,垂足为点D,M为线段DB上一动点(不包括端点),点N在直线AC左上方且∠NCM=131°,CN=CM,如图①.(1)求证:∠ACN=∠AMC;(2)记△ANC得面积为1,记△ABC得面积为1.求证:;(3)延长线段AB到点P,使BP=BM,如图②.探究线段AC与线段DB满足什么数量关系时对于满足条件的任意点M,AN=CP始终成立?(写出探究过程)21.(6分)小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?22.(8分)已知:如图,在△ABC中,AB=AC,点D是BC的中点,作∠EAB=∠BAD,AE边交CB的延长线于点E,延长AD到点F,使AF=AE,连结CF.求证:BE=CF.23.(8分)如图,B地在A地的正东方向,两地相距28km.A,B两地之间有一条东北走向的高速公路,且A,B两地到这条高速公路的距离相等.上午8:00测得一辆在高速公路上行驶的汽车位于A地的正南方向P处,至上午8:20,B地发现该车在它的西北方向Q处,该段高速公路限速为110km/h.问:该车是否超速行驶?24.(8分)已知:如图所示,△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线段BD、CE,垂足分别D、E.(1)求证:DE=BD+CE.(2)如果过点A的直线经过∠BAC的内部,那么上述结论还成立吗?请画出图形,直接给出你的结论(不用证明).25.(10分)已知:从边形的一个顶点出发共有条对角线;从边形的一个顶点出发的所有对角线把边形分成个三角形;正边形的边长为,周长为.求的值.26.(10分)先化简再求值:4(m+1)2-(2m+5)(2m-5),其中m=-1.

参考答案一、选择题(每小题3分,共30分)1、C【分析】连接BP,根据等边三角形的性质得到AD是BC的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可.【详解】解:连接BP,∵△ABC是等边三角形,D是BC的中点,∴AD是BC的垂直平分线,∴PB=PC,当的长最小时,即PB+PE最小则此时点B、P、E在同一直线上时,又∵BE为中线,∴点P为△ABC的三条中线的交点,也就是△ABC的重心,故选:C.【点睛】本题考查的是三角形的重心的概念和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.2、D【分析】根据等腰三角形的性质和三角形的外角性质可得∠A2A1A3=2θ,∠A3A2A4=3θ,……,以此类推,可得摆放第9根小棒后,∠A9A8A10=9θ,,由于只能放9根,则且,求得的取值范围即可得出答案.【详解】∵,∴∠AA2A1=∠BAC=θ,∴∠A2A1A3=2θ,同理可得∠A3A2A4=3θ,……以此类推,摆放第9根小棒后,∠A9A8A10=9θ,,∵只能放9根,∴即,解得,故选:D.【点睛】本题考查了等腰三角形的性质与三角形的外角性质,熟练掌握等边对等角,以及三角形的外角等于不相邻的两个内角之和,是解题的关键.3、D【分析】根据题意可知∠ACD=45°,则GF=FC,继而可得EG=DF,由此可判断①;由SAS证明△EHF≌△DHC,得到∠HEF=∠HDC,继而有∠AEH+∠ADH=180°,由此可判断②;同②证明△EHF≌△DHC,可判断③;若AE:AB=2:3,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠DHE=90°,△EHD为等腰直角三角形,过点H作HM⊥CD于点M,设HM=x,则DM=5x,DH=,CD=6x,根据三角形面积公式即可判断④.【详解】①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF-GF,DF=CD-FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-∠HDC=∠AEF+∠ADF=180°,故②正确;③∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),故③正确;④∵AE:AB=2:3,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,如图所示:设HM=x,则DM=5x,DH==,CD=6x,则S△DHC=×CD×HM=3x2,S△EDH=×DH2=13x2,∴3S△EDH=13S△DHC,故④正确,所以正确的有4个,故选D.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、三角形面积的计算等知识;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.4、B【分析】由AD是BC边上的高可得出∠ADE=90°,在△ABC中利用三角形内角和定理可求出∠BAC的度数,由角平分线的定义可求出∠BAD的度数,再根据三角形外角的性质可求出∠ADE的度数,在△ADE中利用三角形内角和定理可求出∠DAE的度数;【详解】∵AD是BC边上的高,∴∠ADE=90°,∵∠BAC+∠B+∠C=180°,∴∠BAC=180°-∠B-∠C=70°,∵AD是∠BAC平分线,∴,∴∠ADE=∠B+∠BAD=32°+35°=67°,∵∠ADE+∠AED+∠DAE=180°,∴∠DAE=180°-∠ADE-∠AED=180°-90°-67°=23°;故答案为:B.【点睛】本题考查了三角形内角和定理以及三角形外角的性质,解题的关键是利用三角形外角的性质求出∠AED的度数5、A【解析】根据表格可知:数据25出现1次,26出现1次,27出现2次,28出现3次,∴众数是28,这组数据从小到大排列为:25,26,27,27,28,28,28∴中位数是27∴这周最高气温的中位数与众数分别是27,28故选A.6、A【分析】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出.再根据ASA证明,那么,等量代换得到,利用线段的和差关系求出.然后在直角中利用勾股定理求出CD的长.【详解】解:如图,连接FC,则.,.在与中,,,,,.在中,,,,.故选A.【点睛】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF与DF是解题的关键.7、B【分析】根据分式的定义,即可完成求解.【详解】、、的分母不含未知数,故不是分式;、符合分式定义,故为分式;故选:B.【点睛】本题考查了分式的知识;解题的关键是熟练掌握分式的定义,即可得到答案.8、B【分析】分别根据全等三角形的性质、绝对值的性质、平行线的性质和余角的性质判断各命题即可.【详解】解:A.全等三角形的对应角相等,是真命题;B.若||=-,则a≤0,故原命题是假命题;C.两直线平行,内错角相等,是真命题;D.只有锐角才有余角,是真命题,故选:B.【点睛】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题真假的关键是要熟悉课本中的性质定理.9、A【分析】根据角平分线的定义可得,根据三角形的一个外角等于与它不相邻的两个内角的和和角平分线的定义表示出,然后整理即可得到,代入数据计算即可得解.【详解】解:∵BE平分∠ABC,∴,∵CE平分△ABC的外角,∴在△BCE中,由三角形的外角性质,∴∴.故选A.【点睛】本题考查了三角形的外角性质的应用,能正确运用性质进行推理和计算是解此题的关键,注意:三角形的一个外角等于和它不相邻的两个内角的和.10、A【分析】根据分式的分母不为0可得关于x的不等式,解不等式即得答案.【详解】解:要使分式有意义,则,所以.故选:A.【点睛】本题考查了分式有意义的条件,属于应知应会题型,熟知分式的分母不为0是解题的关键.二、填空题(每小题3分,共24分)11、八(或8)【解析】分析:根据正多边形的每一个内角为,求出正多边形的每一个外角,根据多边形的外角和,即可求出正多边形的边数.详解:根据正多边形的每一个内角为,正多边形的每一个外角为:多边形的边数为:故答案为八.点睛:考查多边形的外角和,掌握多边形的外角和是解题的关键.12、-1【分析】运用立方根和平方根和算术平方根的定义求解【详解】解:∵a﹣b+6的算术平方根是2,2a+b﹣1的平方根是±4,∴a﹣b+6=4,2a+b﹣1=16,解得a=5,b=7,∴a﹣5b+1=5﹣15+1=﹣27,∴a﹣5b+1的立方根﹣1.故答案为:﹣1【点睛】本题考查了立方根和平方根和算术平方根,解题的关键是按照定义进行计算.13、【分析】作BE⊥AC垂足为E,交AD于F,此时CF+EF最小,利用面积法即可求得答案.【详解】作BE⊥AC垂足为E,交AD于F,∵AB=AC,BD=DC,

∴AD⊥BC,

∴FB=FC,

∴CF+EF=BF+EF,

∵线段BE是垂线段,根据垂线段最短,

∴点E、点F就是所找的点;∵,∴,∴CF+EF的最小值.故答案为:.【点睛】本题考查了等腰三角形的性质、垂直平分线的性质、垂线段最短等知识,掌握应用面积法求高是解决这个问题的关键.14、【分析】先根据多项式乘以多项式法则展开,合并同类项,令x的一次项系数为0,列出关于a的方程,求出即可.【详解】解:,∵不含x的一次项,∴3-a=0,∴a=3,故答案为:3.【点睛】本题考查了多项式乘以多项式法则,理解多项式中不含x的一次项即x的一次项的系数为0是解题的关键.不要忘记合并同类项.15、9:1【解析】试题分析:由图中可以看出,此时的时间为9:1.考点:镜面对称.16、2019【分析】将x3+x2-3x+2020进行变形然后代入求解即可.【详解】解:原式=【点睛】本题主要考查了二次根式的计算,根据原式进行变形代入求值是解题的关键.17、(2,-2)【分析】根据等腰直角三角形的性质构造全等三角形,证明全等三角形后,根据全等的性质可得对应线段等,即可得到等量,列出方程求解即可得到结论;【详解】解:如图,过C作CF⊥x轴,CE⊥y轴,垂足分别为E、F,则四边形OECF为矩形,∠BEC=∠CFA=90°,由题意可知,∠BCA=90°,BC=AC,∵四边形OECF为矩形,∴∠ECF=90°,∴∠1+∠3=90°,又∵∠2+∠3=90°,∴∠1=∠2,在△BEC和△AFC中,∴△BEC≌△AFC∴CE=CF,AF=BE,设C点坐标为(a,b),则AF=m+4-a,BE=m-b∴解得,∴点C(2,-2)故答案为:(2,-2)【点睛】本题考查一次函数与坐标轴交点、等腰直角三角形性质、三角形全等性质和判定、两点间距离等知识点,画出图形,构造全等图形是解题的关键.18、100°【分析】分别作点P关于OA、OB的对称点P、P,连P、P,交OA于M,交OB于N,△PMN的周长=PP,然后得到等腰△OP1P2中,∠OPP+∠OPP=100°,即可得出∠MPN=∠OPM+∠OPN=∠OPM+∠OPN=100°.【详解】分别作点P关于OA、OB的对称点P、P,连接PP,交OA于M,交OB于N,则OP=OP=OP,∠OPM=∠MPO,∠NPO=∠NPO,根据轴对称的性质,可得MP=PM,PN=PN,则△PMN的周长的最小值=PP,∴∠POP=2∠AOB=80°,∴等腰△OPP中,∠OPP+∠OPP=100°,∴∠MPN=∠OPM+∠OPN=∠OPM+∠OPN=100°,故答案为100°【点睛】此题考查轴对称-最短路线问题,解题关键在于作辅助线三、解答题(共66分)19、(1)成人有8人,儿童有12人;(2)①400;;②当时,方案二优惠;当时,方案一和方案二一样优惠;当时,方案一优惠.【分析】(1)设成人有x人,则儿童有(20-x)人,根据买门票共花费560元列方程求解即可;(2)①旅行团中有成人a人,则有儿童(20-a)人,然后根据不同的优惠方案分别列代数式即可;②分,,三种情况,分别求出对应的a的取值范围即可.【详解】解:(1)设成人有x人,则儿童有(20-x)人,根据题意得:40x+20(20-x)=560,解得:x=8,则20-x=12,答:成人有8人,儿童有12人;(2)①旅行团中有成人a人,则有儿童(20-a)人,∴方案一:,方案二:;②当时,即,解得:,∴当时,方案二优惠;当时,即,解得:,∴当时,方案一和方案二一样优惠;当时,即,解得:,∵,∴当时,方案一优惠.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,正确理解题意,找出合适的等量关系和不等关系列出方程和不等式是解题的关键.20、(1)证明见解析;(2)证明见解析;(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,证明见解析.【分析】(1)由三角形的内角和定理可求∠ACN=∠AMC=131°-∠ACM;

(2)过点N作NE⊥AC于E,由“AAS”可证△NEC≌△CDM,可得NE=CD,由三角形面积公式可求解;

(3)过点N作NE⊥AC于E,由“SAS”可证△NEA≌△CDP,可得AN=CP.【详解】(1)∵∠BAC=41°,∴∠AMC=180°﹣41°﹣∠ACM=131°﹣∠ACM.∵∠NCM=131°,∴∠ACN=131°﹣∠ACM,∴∠ACN=∠AMC;(2)过点N作NE⊥AC于E,∵∠CEN=∠CDM=90°,∠ACN=∠AMC,CM=CN,∴△NEC≌△CDM(AAS),∴NE=CD,CE=DM;∵S1AC•NE,S2AB•CD,∴;(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,理由如下:过点N作NE⊥AC于E,由(2)可得NE=CD,CE=DM.∵AC=2BD,BP=BM,CE=DM,∴AC﹣CE=BD+BD﹣DM,∴AE=BD+BP=DP.∵NE=CD,∠NEA=∠CDP=90°,AE=DP,∴△NEA≌△CDP(SAS),∴AN=PC.【点睛】本题三角形综合题,考查了全等三角形的判定和性质,三角形内角和定理,三角形面积公式等知识,添加恰当辅助线构造全等三角形是本题的关键.21、小华家离学校1米.【解析】设出平路和坡路的路程,由题意从家里到学校需10分钟,从学校到家里需15分钟,列方程即可得出答案.【详解】设平路有x米,坡路有y米,根据题意列方程得,,解这个方程组,得,所以x+y=1.所以小华家离学校1米.【点睛】本题考查二元一次方程的应用,此题主要利用时间、速度、路程三者之间的关系进行解答,注意来回坡路的变化是解题的关键.22、证明见解析.【解析】试题分析:根据等腰三角形的性质可得∠CAD=∠BAD,由等量关系可得∠CAD=∠EAB,有SAS可证△ACF≌△ABE,再根据全等三角形的对应边相等即可得证.试题解析:证明:∵AB=AC,点D是BC的中点,∴∠CAD=∠BAD.又∵∠EAB=∠BAD,∴∠CAD=∠EAB.在△ACF和△ABE中,∵AC=AB,∠CAF=∠BAE,AF=AE,∴△ACF≌△ABE(SAS),∴BE=CF.点睛:此题考查了等腰三角形的性质以及全等三角形的判定与性质.此题难度中等,注意掌握数形结合思想的应用.23、该车超速行驶了【解析】试题分析:根据题意得到AB=28,∠P=45°,∠PAC=90°,∠ABQ=45°,则∠ACP=45°,∠BCQ=45°,作AH⊥PQ于H,根据题意有AH=BQ,再证明△ACH≌△BCQ,得到AC=BC=AB=14,根据等腰直角三角形的性质得PC=AC=28,CQ==14,所以PQ=PC+CQ=42,然后根据速度公式计算出该车的速度=126km/h,再与110km/h比较即可判断该车超速行驶了.试题解析:根据题意可得,AB=28,∠P=45°,∠PAC=90°,∠ABQ=45°,∴∠ACP=45°,∴∠BCQ=45°,作AH⊥PQ于H,则AH=BQ,在△

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论