临夏市重点中学2025届八年级数学第一学期期末综合测试模拟试题含解析_第1页
临夏市重点中学2025届八年级数学第一学期期末综合测试模拟试题含解析_第2页
临夏市重点中学2025届八年级数学第一学期期末综合测试模拟试题含解析_第3页
临夏市重点中学2025届八年级数学第一学期期末综合测试模拟试题含解析_第4页
临夏市重点中学2025届八年级数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

临夏市重点中学2025届八年级数学第一学期期末综合测试模拟试题测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图1,甲、乙两个容器内都装了一定数量的水,现将甲容器中的水匀速注入乙容器中.图2中的线段AB,CD分别表示容器中的水的深度h(厘米)与注入时间t(分钟)之间的函数图象.下列结论错误的是()A.注水前乙容器内水的高度是5厘米B.甲容器内的水4分钟全部注入乙容器C.注水2分钟时,甲、乙两个容器中的水的深度相等D.注水1分钟时,甲容器的水比乙容器的水深5厘米2.叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为()A.0.5×10﹣4 B.5×10﹣4 C.5×10﹣5 D.50×10﹣33.我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a、b,那么的值为().A.49 B.25 C.13 D.14.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过(﹣2,1) B.y随x的增大而增大C.图象经过第一、二、三象限 D.当x>时,y<05.小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了41.4元,而两个月前买同重量的这两样菜只要36元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,设两个月前买的萝卜和排骨的单价分别为x元/斤,y元/斤,则可列方程为()A. B.C. D.6.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是( )A.带①去 B.带②去 C.带③去 D.①②③都带去7.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是().A.众数是6吨 B.平均数是5吨 C.中位数是5吨 D.方差是8.点P(3,﹣2)关于x轴的对称点P′的坐标是()A.(﹣3,2) B.(3,﹣2) C.(﹣3,﹣2) D.(3,2)9.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A. B.C. D.10.已知(x+y)2=1,(x-y)2=49,则xy的值为()A.12 B.-12 C.5 D.-511.已知一个等腰三角形的两边长a、b满足方程组则此等腰三角形的周长为()A.5 B.4 C.3 D.5或412.下列计算:,其中结果正确的个数为()A.1 B.2 C.3 D.4二、填空题(每题4分,共24分)13.甲、乙两地相距1000km,如果乘高铁列车从甲地到乙地比乘特快列车少用3h,已知高铁列车的平均速度是特快列车的1.6倍,设特快列车的平均速度为xkm/h,根据题意可列方程为__.14.若,那么的化简结果是.15.如果x2>0,那么x>0,这是一个_________命题16.估计与0.1的大小关系是:_____0.1.(填“>”、“=”、“<”)17.要使分式有意义,则x应满足条件____.18.如图,在Rt△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为___________三、解答题(共78分)19.(8分)已知:如图,在中,点D在边AC上,BC与DE交于点P,AB=DB,(1)求证:(2)若AD=2,DE=5,BE=4,求的周长之和.20.(8分)综合与实践(1)问题发现如图1,和均为等边三角形,点在同一直线上,连接.请写出的度数及线段之间的数量关系,并说明理由.(2)类比探究如图2,和均为等腰直角三角形,,点在同一直线上,为中边上的高,连接.填空:①的度数为____________;②线段之间的数量关系为_______________________________.(3)拓展延伸在(2)的条件下,若,则四边形的面积为______________.21.(8分)如图,在中,,直线垂直平分,交于点,交于点,且,求的长.22.(10分)李明和王军相约周末去野生动物园游玩。根据他们的谈话内容,求李明乘公交、王军骑自行车每小时各行多少公里?23.(10分)勾股定理是初中数学学习的重要定理之一,这个定理的验证方法有很多,你能验证它吗?请你根据所给图形选择一种方法,画出验证勾股定理的方法,并写出验证过程.24.(10分)在平面直角坐标系中,已知点A的坐标为(0,15),点B的坐标为(20,0).(1)求直线AB的表达式;(2)若点C的坐标为(m,9),且S△ABC=30,求m的值;(3)若点D的坐标为(12,0),在射线AB上有两点P,Q,使得以O,P,Q为顶点的三角形与△OPD全等,求点P的坐标.25.(12分)如图,是等边三角形,点是的中点,,过点作,垂足为,的反向延长线交于点.(1)求证:;(2)求证:垂直平分.26.在平面直角坐标系中,已知直线l:y=﹣x+2交x轴于点A,交y轴于点B,直线l上的点P(m,n)在第一象限内,设△AOP的面积是S.(1)写出S与m之间的函数表达式,并写出m的取值范围.(2)当S=3时,求点P的坐标.(3)若直线OP平分△AOB的面积,求点P的坐标.

参考答案一、选择题(每题4分,共48分)1、D【解析】根据题意和函数图象,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:由图可得,注水前乙容器内水的高度是5厘米,故选项A正确,甲容器内的水4分钟全部注入乙容器,故选项B正确,注水2分钟时,甲容器内水的深度是20×24=10厘米,乙容器内水的深度是:5+(15﹣5)×24=10厘米,故此时甲、乙两个容器中的水的深度相等,故选项注水1分钟时,甲容器内水的深度是20﹣20×14=15厘米,乙容器内水的深度是:5+(15﹣5)×14=7.5厘米,此时甲容器的水比乙容器的水深15﹣7.5=7.5厘米,故选项故选:D.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.2、C【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,0.00005=,故选C.3、A【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方25,也就是两条直角边的平方和是25,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=12,据此即可得结果.【详解】根据题意,结合勾股定理a2+b2=25,四个三角形的面积=4×ab=25-1=24,∴2ab=24,联立解得:(a+b)2=25+24=1.故选A.4、D【解析】根据一次函数的性质,依次分析选项可得答案.解:根据一次函数的性质,依次分析可得,A、x=-2时,y=-2×-2+1=5,故图象必经过(-2,5),故错误,B、k<0,则y随x的增大而减小,故错误,C、k=-2<0,b=1>0,则图象经过第一、二、四象限,故错误,D、当x>时,y<0,正确;故选D.点评:本题考查一次函数的性质,注意一次函数解析式的系数与图象的联系5、A【分析】根据题目中设的两个月前的萝卜和排骨的单价,先列出两个月前的式子,再根据降价和涨价列出现在的式子,得到方程组.【详解】解:两个月前买菜的情况列式:,现在萝卜的价格下降了10%,就是,排骨的价格上涨了20%,就是,那么这次买菜的情况列式:,∴方程组可以列为.故选:A.【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意找到等量关系列出方程组.6、C【分析】本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【详解】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.【点睛】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.7、C【解析】试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].数据:3,4,5,6,6,6,中位数是5.5,故选C考点:1、方差;2、平均数;3、中位数;4、众数8、D【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点P(3,﹣2)关于x轴的对称点P′的坐标是(3,2).故选D.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.9、A【分析】根据轴对称图形的概念求解.【详解】A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,折叠后两边可重合.10、B【分析】根据完全平方公式把和展开,然后相减即可求出的值.【详解】由题意知:①,②,①-②得:,∴,即,∴,故选:B.【点睛】本题考查了完全平方公式,灵活运用完全平方公式,熟记公式的结构特征是解题的关键.11、A【解析】试题分析:解方程组得:所以,等腰三角形的两边长为2,1.若腰长为1,底边长为2,由1+1=2知,这样的三角形不存在.若腰长为2,底边长为1,则三角形的周长为2.所以这个等腰三角形的周长为2.故选A.考点:1.等腰三角形的性质;2.解二元一次方程组.12、D【解析】根据二次根式的运算法则即可进行判断.【详解】,正确;正确;正确;,正确,故选D.【点睛】此题主要考查二次根式的运算,解题的关键是熟知二次根式的性质:;.二、填空题(每题4分,共24分)13、.【分析】根据题意可以列出相应的分式方程,本题得以解决.【详解】由题意可得,,故答案为:.【点睛】此题考查由实际问题抽象出分式方程,解题关键在于根据题意找到等量关系列出方程.14、【分析】直接利用二次根式的性质化简求出答案.【详解】∵x<2,∴=2﹣x.故答案为:2﹣x.【点睛】本题考查了二次根式的性质与化简,正确把握二次根式的性质是解答本题的关键.15、假【分析】根据有理数的乘方法则即可得到答案.【详解】解:如果x2>0,那么x>0,是假命题,例如:(-2)2=4>0,-2<0;故答案为:假【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.16、>【解析】∵.,∴,∴,故答案为>.17、x≠1.【分析】当分式的分母不为零时,分式有意义,即x−1≠2.【详解】当x﹣1≠2时,分式有意义,∴x≠1.故答案为:x≠1.【点睛】本题考查分式有意义的条件;熟练掌握分式分母不为零时,分式有意义是解题的关键.18、1.【解析】∵DE是AB的垂直平分线,∴AD=BD,∴∠DAE=∠B=30°,∴∠ADC=∠DAE+∠B=60°,∴∠CAD=30°,∴AD为∠BAC的角平分线,∵∠C=10°,DE⊥AB,∴DE=CD=3,∵∠B=30°,∴BD=2DE=6,∴BC=1.【点睛】本题主要考查的知识点有线段垂直平分线的性质、角平分线上的点到角的两边距离相等的性质、直角三角形30°角所对的直角边等于斜边的一半的性质,熟练运用各性质是解题的关键.三、解答题(共78分)19、(1)见解析;(2)1【分析】(1)证明∠ABC=∠DBE,根据ASA可证明△ABC≌△DBE即可;

(2)根据全等三角形的性质求出BE、DE,再由AD求出CD,根据三角形的周长公式计算即可.【详解】解:(1)证明:∵∠ABD=∠CBE,

∴∠ABC=∠DBE,

∵∠A=∠BDE,AB=BD,

∴△ABC≌△DBE(ASA);

(2)∵△ABC≌△DBE,

∴DE=AC=5,BE=BC=4,∵AD=2,∴CD=AC-AD=3,

∴△CDP和△BEP的周长和=CD+DP+CP+BP+PE+BE=CD+DE+BC+BE=1.【点睛】本题考查的是全等三角形的性质、三角形内角和定理的应用,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.20、(1),证明详见解析;(2)①;②;(3)35【分析】(1)和均为等边三角形,根据等边三角形的性质即可证得,所以即可求出,证明出.(2)①和均为等腰直角三角形,可证的,因为,所以∠CED=∠CDE=45°,可得出,②为中边上的高,则DE=2CM,由全等可知EB=AD,即可得.(3)四边形的面积等于△ACE的面积加上△AEB的面积,根据已知条件利用三角形的面积公式即可求解.【详解】(1)结论:证明:和均为等边三角形∵∴在和中,∴∴∴∠(2)解:∵∴∴在和中,∴∵△DCE是等腰直角三角形∴∠CDE=∠CED=45°∴∴∵∴EB=AD∵为中边上的高∴DE=2CM∴(3)∵,∴AE=10【点睛】本题考查的是三角形的综合问题,其中包括等腰三角形的性质,全等三角形的判定和性质,掌握这几个知识点是解题的关键.21、【分析】首先连接AD,由DE垂直平分AC,根据线段垂直平分线的性质,易得AD=CD,又由在△ABC中,AB=AC,∠BAC=120°,易求得∠DAC=∠B=∠C=30°,继而可得∠BAD=90°,然后利用含30°角的直角三角形的性质,可求得CD、BD的长,进而得出BC的长.【详解】连接AD.∵DE垂直平分AC,∴AD=CD,∠DEC=90°,∴∠DAC=∠C.∵在△ABC中,AB=AC,∠BAC=120°,∴∠B=∠C30°,∴∠DAC=∠C=∠B=30°,∴∠ADB=∠DAC+∠C=60°,∴∠BAD=180°﹣∠B﹣∠ADB=90°,在Rt△CDE中,∠C=30°,DE=2cm,∴CD=2DE=4cm,∴AD=CD=4cm,在Rt△BAD中,∠B=30°,∴BD=2AD=8cm,∴BC=BD+CD=12cm.【点睛】本题考查了线段垂直平分线的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.22、李明乘公交、王军骑自行车的速度分别为20km/h、60km/h.【分析】根据“路程÷速度=时间”这一等量关系,列出方程解决即可.【详解】解:设王军的速度为xkm/h,则李明的速度为为3xkm/h,由题意得:解得x=20经检验,x=20是原方程的解,且符合题意∴3x=60答:李明乘公交、王军骑自行车的速度分别为20km/h、60km/h.【点睛】本题考查了分式方程应用问题,解决本题的关键是找出题干中的等量关系.23、见解析【分析】根据勾股定理的定义及几何图形的面积法进行证明即可得解.【详解】如下图,根据几何图形的面积可知:整理得:.【点睛】本题主要考查了勾股定理的推到,熟练掌握面积法推到勾股定理是解决本题的关键.24、(1);(2)m=4或m=12;(3)P1(12,6),P2(4,12),P3(36,-12)【分析】(1)运用待定系数法求解即可;(2)结合C的坐标,表示出三角形ABC的面积,分类求解即可;(3)针对P的位置进行分类讨论即可.【详解】(1)∵点A(0,15)在直线AB上,故可设直线AB的表达式为y=kx+15又∵点B(20,0)在直线AB上∴20k+15=0,∴k=,∴直线AB的表达为;(2)过C作CM∥x轴交AB于M∵点C的坐标为(m,9)∴点M的纵坐标为9,当y=9时,x+15=9,解得x=8,∴M(8,9),∴CM=|m-8|,∴S△ABC=S△AMC+S△BMC=CM·(yA-yM)+CM·(yM-yB)=CM·OA=|m-8|∵S△ABC=30,∴|m-8|=30,解得m=4或m=12;(3)①当点P在线段AB上时,(i)若点P在B,Q之间,当OQ=OD=12,且∠POQ=∠POD时,△OPQ≌△OPD,∵OA=15,OB=20,∴AB==25,设△AOB中AB边上的高为h,则AB·h=OA·OB,∴h=12,∴OQ⊥AB,∴PD⊥OB,∴点P的横坐标为12,当x=12时,y=x+15=6,∴P1(12,6),(ii)若点P在A,Q之间,当PQ=OD=12,且∠OPQ=∠POD时,有△POQ≌△OPD,则BP=OB=20,∴BP:AB=20:25=4:5,∴S△POB=S△AOB,作PH⊥OB于H,则S△POB=OB·PH,∴OB·PH=×OB·OA,∴PH=OA=×15=12,当y=12时,x+15=12,解得x=4,∴P2(4,12),②当点P在AB的延长线上时,(i)若点Q在B,P之间,且PQ=OD,∠OPQ=∠POD时,△POQ≌△OPD,作OM⊥AB于M,PN⊥OB于N,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论