版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南昆明市2025届数学八上期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若等腰三角形的两边长分别是3和10,则它的周长是()A.16 B.23 C.16或23 D.132.如图,已知,,与交于点,则对于下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是()A.①和② B.②和③ C.①和③ D.①、②和③3.如图,在中,,高BE和CH的交点为O,则∠BOC=()A.80° B.120° C.100° D.150°4.下面四个手机图标中,可看作轴对称图形的是()A. B. C. D.5.如果分式的值为零,那么应满足的条件是()A., B., C., D.,6.下列各数中,无理数的个数为().-0.101001,,,,,0,,0.1.A.1个 B.2个 C.3个 D.4个7.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个8.若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3 D.x=39.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”四个节气,其中轴对称图形是()A. B. C. D.10.计算:21+79=()A.282.6 B.289 C.354.4 D.314二、填空题(每小题3分,共24分)11.若实数m,n满足m-2+n-20182=012.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2等_________.13.对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.那么4※8=________.14.已知a+=,则a-=__________15.若点A(2,m)关于y轴的对称点是B(n,5),则mn的值是_____.16.已知一个多边形的内角和为540°,则这个多边形是______边形.17.函数中自变量x的取值范围是______.18.如图,在平面直角坐标系中,点A1,A2,A3…都在x轴上,点B1,B2,B3…都在直线上,,,…,都是等腰直角三角形,若OA1=1,则点B2020的坐标是_______.三、解答题(共66分)19.(10分)解方程:20.(6分)阅读下列解题过程:(1);(2);请回答下列问题:(1)观察上面解题过程,请直接写出的结果为__________________.(2)利用上面所提供的解法,请化简:21.(6分)如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.22.(8分)如图①,中,,、的平分线交于O点,过O点作交AB、AC于E、F.(1)猜想:EF与BE、CF之间有怎样的关系.(2)如图②,若,其他条件不变,在第(1)问中EF与BE、CF间的关系还存在吗?并说明理由.(3)如图③,若中的平分线BO与三角形外角平分线CO交于O,过O点作交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.23.(8分)(1)计算:(2)分解因式:24.(8分)如图,AC平分∠BCD,AB=AD,AE⊥BC于E,AF⊥CD于F.(1)若∠ABE=60°,求∠CDA的度数;(2)若AE=2,BE=1,CD=4.求四边形AECD的面积.25.(10分)如图,,,垂足分别为E、D,CE,BD相交于.(1)若,求证:;(2)若,求证:.26.(10分)如图,在等边△ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E(点E不与点A重合).(1)若∠CAP=20°.①求∠AEB=°;②连结CE,直接写出AE,BE,CE之间的数量关系.(2)若∠CAP=α(0°<α<120°).①∠AEB的度数是否发生变化,若发生变化,请求出∠AEB度数;②AE,BE,CE之间的数量关系是否发生变化,并证明你的结论.
参考答案一、选择题(每小题3分,共30分)1、B【分析】本题没有明确已知的两边的具体名称,要分为两种情况即:①3为底,10为腰;②10为底,3为腰,可求出周长.注意:必须考虑三角形的三边关系进行验证能否组成三角形.【详解】∵等腰三角形的两边分别是3和10,∴应分为两种情况:①3为底,10为腰,则3+10+10=1;②10为底,3腰,而3+3<10,应舍去,∴三角形的周长是1.故选:B.【点睛】本题考查等腰三角形的性质和三角形的三边关系,解题的关键是分情况讨论腰长.2、D【分析】按照已知图形,证明,得到;证明,证明,得到,即可解决问题;【详解】如图所示,在△ABE和△ACF中,,∴,∴,∵,,∴,在△CDE和△BDF中,,∴,∴DC=DB,在△ADC和△ADB中,,∴,∴.综上所述:①②③正确;故选D.【点睛】本题主要考查了全等三角形的性质与判定,准确判断是解题的关键.3、C【分析】在中根据三角形内角和定理求出,然后再次利用三角形内角和定理求出,问题得解.【详解】∵BE和CH为的高,∴.∵,∴在中,,在中,,∴故选C.【点睛】本题考查三角形内角和定理,熟知三角形内角和为180°是解题关键.4、A【分析】根据轴对称图形的概念结合所给图形即可得出答案.【详解】第一个图形是轴对称图形;第二是中心对称图形;第三、四个不是轴对称图形小也不是中心对称图形.故选A.【点睛】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5、A【分析】根据分子等于零,且分母不等于零列式求解即可.【详解】由题意得a-1=0且1a+b≠0,解得a=1,b≠-1.故选A.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.6、B【分析】根据有理数包括整数和分数,无理数包括无限不循环小数和开方开不尽的数,找出其中无理数即可解答.【详解】﹣0.101001是有理数,是无理数,是有理数,是无理数,是有理数,0是有理数,=﹣4是有理数,0.1是有理数;∴无理数的个数为:2.故选B.【点睛】本题考查无理数的定义,无理数的分类:1.开方开不尽的数;2.看似循环实际不循环的数(例:0.3......);3.含π类.7、C【详解】要使△ABP与△ABC全等,必须使点P到AB的距离等于点C到AB的距离,即3个单位长度,所以点P的位置可以是P1,P2,P4三个,故选C.8、C【解析】试题分析:要使有意义,则x-3≠0,即x≠3,故答案选C.考点:分式有意义的条件.9、D【分析】根据轴对称图形的概念判断即可.【详解】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.【点睛】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.10、D【分析】利用乘法分配律即可求解.【详解】原式=故选:D.【点睛】本题主要考查乘法运算律在实数运算中的应用,掌握乘法分配律是解题的关键.二、填空题(每小题3分,共24分)11、1.5【解析】根据非负数的性质列式求出m,n的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得:m-2=0∴m∴m-1故答案为:32【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,解题的关键是利用非负性正确求值.12、【解析】试题解析:所以故答案为13、【分析】根据定义新运算公式和二次根式的乘法公式计算即可.【详解】解:根据题意可得4※8=故答案为:.【点睛】此题考查的是定义新运算和二次根式的化简,掌握定义新运算公式和二次根式的乘法公式是解决此题的关键.14、【解析】通过完全平方公式即可解答.【详解】解:已知a+=,则==10,则==6,故a-=.【点睛】本题考查完全平方公式的运用,熟悉掌握是解题关键.15、-10【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴的对称点的坐标是(-x,y),根据关于y轴对称的点,纵坐标相同,横坐标互为相反数得出m,n的值,从而得出mn.【详解】解:∵点A(2,m)关于y轴的对称点是B(n,5),∴n=-2,m=5,∴mn=-10.故答案为-10.【点睛】本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.关于y轴对称的点,纵坐标相同,横坐标互为相反数,是需要识记的内容.16、5.【解析】设这个多边形是n边形,由题意得,(n-2)×180°=540°,解之得,n=5.17、【分析】根据二次根式及分式有意义的条件,结合所给式子得到关于x的不等式组,解不等式组即可求出x的取值范围.【详解】由题意得,,解得:-2<x≤3,故答案为-2<x≤3.【点睛】本题考查了二次根式及分式有意义的条件,注意掌握二次根式有意义:被开方数为非负数,分式有意义分母不为零.18、【分析】根据等腰直角三角形的性质和一次函数上点的特征,依次写出,,,....找出一般性规律即可得出答案.【详解】解:当x=0时,,即,∵是等腰直角三角形,∴,将x=1代入得,∴,同理可得……∴.故答案为:.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等腰直角三角形的性质.三、解答题(共66分)19、x=1【解析】试题分析:按照解分式方程的步骤求解即可.试题解析:去分母得,3x(x-2)-2(x+2)=3(x+2)(x-2)去括号得,3x2-6x-2x-4=3x2-12移项,合并同类项得:-8x=-8∴x=1经检验:x=1是原方程的根,考点:解分式方程.20、(1);(2)9【分析】(1)利用已知数据变化规律直接得出答案;(2)利用分母有理化的规律将原式化简进而求出即可.【详解】解:(1)=.(2)=-1+-+-+…+-+-=-1+=-1+10=9【点睛】此题主要考查了分母有理化,正确化简二次根式是解题关键.21、证明见解析.【分析】要证是的中点,根据题意可知,证明为等腰三角形,利用等腰三角形的高和中线向重合即可得证.【详解】证明:连接,在等边,且是的中点,,,,,,,,,为等腰三角形,又,是的中点.【点睛】本题考查了等腰三角形顶角平分线、底边上的中线和高三线合一的性质以及等边三角形每个内角为的知识.辅助线的作出是正确解答本题的关键.22、(1),证明见解析;(2)存在,证明见解析;(3)等腰三角形为△BEO,△CFO,,证明见解析.【分析】(1)根据角平分线的定义和平行线的性质可得∠EOB=∠EBO,∠FOC=∠FCO,进而可得EO=EB,FO=FC,然后根据线段间的和差关系即得结论;(2)同(1)的思路和方法解答即可;(3)同(1)的思路和方法可得EO=EB,FO=FC,再根据线段间的和差关系即得结论.【详解】(1)EF、BE、FC的关系是EF=BE+FC.理由如下:∵OB、OC平分∠ABC、∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EOB=∠EBO,∠FOC=∠FCO,∴EO=EB,FO=FC,∵EF=EO+OF,∴EF=BE+CF;(2)当AB≠AC时,EF=BE+CF仍然成立.理由如下:∵OB、OC平分∠ABC、∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EOB=∠EBO,∠FOC=∠FCO,∴EO=EB,FO=FC,∵EF=EO+OF,∴EF=BE+CF;(3)等腰三角形为△BEO,△CFO,EF=BE﹣FC.理由如下:如图③,∵OB、OC平分∠ABC、∠ACG,∴∠ABO=∠OBC,∠ACO=∠OCG,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCG,∴∠EOB=∠EBO,∠FOC=∠ACO,∴EO=EB,FO=FC,∴△BEO与△CFO为等腰三角形,∵EF=EO-OF,∴EF=BE-CF.【点睛】本题考查了角平分线的定义、平行线的性质以及等腰三角形的判定等知识,属于常考题型,熟练掌握上述知识是解题的关键.23、(1);(2)【分析】(1)分别进行二次根式的化简、有理数的乘方、开立方以及去绝对值符号的运算,然后按照实数的运算法则求得计算结果即可;(2)先运用平方差公式,然后再运用完全平方公式进行因式分解即可.【详解】(1),;(2).【点睛】本题考查了实数的运算以及因式分解的知识,解答此题的关键是熟练各部分的法则.24、(1)120°;(2)1.【分析】(1)、根据角平分线的性质以及AB=AD得出Rt△ABE和Rt△ADF全等,从而得出∠ADF=∠ABE=60°,根据平角得出∠ADC的度数;(2)、根据三角形全等得出FD=BE=1,AF=AE=2,CE=CF=CD+FD=5,最后根据S四边形AECD=S△AEC+S△ACD得出答案.【详解】解:(1)∵AC平分∠BCD,AE⊥BC,AF⊥CD,∴∠ACE=∠ACF,∠AEC=∠AFC=10°,∴AE=AF,在Rt△ABE和Rt△ADF中,AE=AF,AB=AD,∴Rt△ABE≌Rt△ADF(HL),∴∠ADF=∠ABE=60°,∴∠CDA=180°-∠ADF=120°;(2)由(1)知Rt△ABE≌Rt△ADF,∴FD=BE=1,AF=AE=2,在△AEC和△AFC中,∠ACE=∠ACF,∠AEC=∠AFC,AC=AC,∴△AEC≌△AFC(AAS),∴CE=CF=CD+FD=5,∴S四边形AECD=S△AEC+S△ACD=EC·AE+CD·AF=×5×2+×4×2=1.【点睛】本题主要考查的是角平分线的性质、三角形全等的应用以及三角形的面积计算,难度中等.理解角平分线上的点到角两边的距离相等的性质是解决这个问题的关键.25、(1)证明见解析;(1)证明见解析.【分析】(1)根据已知条件,∠BEC=∠CDB=90°,∠EOB=∠DOC,所以∠B=∠C,则△ABO△ACO(AAS),即OB=OC.(1)根据(1)可得△BOE△COD(AAS),即OE=OD,再由CE⊥AB,BD⊥AC可得AO是∠BAC的角平分线,故∠1=∠1.【详解】(1)∵CE⊥AB,BD⊥AC,∴∠BEC=∠CDB=90°,又∵∠EOB=∠DOC,∴∠B=∠C,∴在△ABO与△ACO中,,∴△ABO△ACO(AAS),∴OB=OC.(1)由(1)知,∠BEO=∠CDO,∴在△BOE与△COD中,,∴△BOE△COD(AAS),∴OE=OD.又∵CE⊥AB,BD⊥AC,∴AO是∠BAC的角平分线,∴∠1=∠1.【点睛】本题考查全等三角形的性质,解题关键是根据已知条件证明得出△ABO△ACO(AAS).26、(1)①1;②CE+AE=BE;(2)①1°;②结论不变:CE+AE=BE,证明见解析【分析】(1)①证明AB=AD,推出∠ABD=∠D=40°,再利用三角形的外角的性质即可解决问题.②结论:CE+AE=BE.在BE上取点M使ME=AE,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 毕业生自我鉴定工作总结10篇
- 2024年度防水施工技术咨询服务合同2篇
- XX项目配置管理计划-Vx.y
- 交通安全日主题班会教案及课件
- 《建筑施工识图入门》课件
- 商务英语口语课件
- 《电缆电视系统》课件
- 照相馆年终总结
- 防止校园金融诈骗
- 销售金融述职报告范文
- DBJ04-T 429-2022 加筋土地基技术标准
- 北京市六年级上册期末测试道德与法治试卷(一)
- 中低位直肠癌手术预防性肠造口中国专家共识(2022版)
- 《斜视弱视学》考试备考题库(含答案)
- 贝多芬与《月光奏鸣曲》
- 银行保险理财沙龙.ppt课件
- 组装公差分析教材
- 管道试压冲洗方案
- 新版出口报关单模版
- 三门峡“东数西算”数据中心项目实施方案【模板范文】
- 大学英语议论文写作模板
评论
0/150
提交评论