北京市2025届八年级数学第一学期期末达标检测试题含解析_第1页
北京市2025届八年级数学第一学期期末达标检测试题含解析_第2页
北京市2025届八年级数学第一学期期末达标检测试题含解析_第3页
北京市2025届八年级数学第一学期期末达标检测试题含解析_第4页
北京市2025届八年级数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市2025届八年级数学第一学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若把分式(均不为0)中的和都扩大3倍,则原分式的值是()A.扩大3倍 B.缩小至原来的 C.不变 D.缩小至原来的2.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(-40,-30)表示,那么(10,20)表示的位置是()A.点A B.点B C.点C D.点D3.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. B.C. D.4.下列各式中,能运用“平方差公式”进行因式分解的是()A. B. C. D.5.若分式方程无解,则m的值为()A.﹣1 B.0 C.1 D.36.我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a、b,那么的值为().A.49 B.25 C.13 D.17.当为()时,分式的值为零.A.0 B.1 C.-1 D.28.如果分式的值为零,那么应满足的条件是()A., B., C., D.,9.如图,,,,是数轴上的四个点,其中最适合表示无理数的点是()A.点 B..点 C.点 D.点10.下列计算正确的是()A.=2 B.﹣=2C.=1 D.=3﹣2二、填空题(每小题3分,共24分)11.4的算术平方根是.12.小强从镜子中看到的电子表的读数是15:01,则电子表的实际读数是______.13.若三角形三个内角的度数之比为,最短的边长是,则其最长的边的长是__________.14.实数P在数轴上的位置如图所示,化简+=________.15.如图,BE⊥AC,垂足为D,且AD=CD,BD=ED.若∠ABC=54°,则∠E=________°.16.如图,A、B的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,A1、B1的坐标分别为(3,1)、(a,b),则a+b的值为_____.17.在实数π、、﹣、、0.303003…(相邻两个3之间依次多一个0)中,无理数有_____个.18.如图,的内角平分线与的外角平分线相交于点,若,则____.三、解答题(共66分)19.(10分)先化简:,再从-1、0、1中选一个合适的x的值代入求值.20.(6分)先化简,再求值:,其中满足21.(6分)端州区在旧城改造过程中,需要整修一段全长4000m的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了25%,结果提前8天完成任务.求原计划每天修路的长度为多少?22.(8分)如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.23.(8分)先化简,再求值:,请在2,﹣2,0,3当中选一个合适的数作为m的值,代入求值.24.(8分)如图,在平面直角坐标系中,A(3,0),B(0,3),过点B画y轴的垂线l,点C在线段AB上,连结OC并延长交直线l于点D,过点C画CE⊥OC交直线l于点E.(1)求∠OBA的度数,并直接写出直线AB的解析式;(2)若点C的横坐标为2,求BE的长;(3)当BE=1时,求点C的坐标.25.(10分)如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x轴以及y=x+1的图象分别交于点C、D,且点D的坐标为(1,n),(1)则n=,k=,b=;(2)函数y=kx+b的函数值大于函数y=x+1的函数值,则x的取值范围是;(3)求四边形AOCD的面积;(4)在x轴上是否存在点P,使得以点P,C,D为顶点的三角形是直角三角形?若存在求出点P的坐标;若不存在,请说明理由.26.(10分)甲乙两人做某种机械零件,已知甲每小时比乙多做4个,甲做120个所用的时间与乙做100个所用的时间相等,求甲乙两人每小时各做几个零件?

参考答案一、选择题(每小题3分,共30分)1、A【分析】将原式中x变成3x,将y变成3y,再进行化简,与原式相比较即可.【详解】由题意得,所以原分式的值扩大了3倍故选择A.【点睛】此题考察分式的化简,注意结果应化为最简分式后与原分式相比较.2、B【解析】由题意知(10,20)表示向东走10米,再向北走20米,故为B点.3、C【解析】分析:设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前30天完成任务,即可得出关于x的分式方程.详解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,依题意得:,即.故选C.点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.4、B【分析】根据平方差公式的特点:①两项式;②两个数的平方差,对每个选项进行判断即可.【详解】A.,提公因式进行因式分解,故A选项不符合题意B.,利用平方差公式进行因式分解,故B选项符合题意C.=(x-2),运用完全平方公式进行因式分解,故C选项不符合题意D.,不能因式分解,故D选项不符合题意故选:B【点睛】本题考查了用平方差公式进行因式分解的知识,解题的关键是掌握平方差公式特点.5、A【分析】

【详解】两边同乘以(x+3)得:x+2=m,x=m-2,∵方程无解∴x+3=0,即m-2+3=0,∴m=-1,故选A.6、A【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方25,也就是两条直角边的平方和是25,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=12,据此即可得结果.【详解】根据题意,结合勾股定理a2+b2=25,四个三角形的面积=4×ab=25-1=24,∴2ab=24,联立解得:(a+b)2=25+24=1.故选A.7、B【解析】要使分式的值为零,需要分式的分子为零而分母不为零,据此列式解答即可.【详解】根据题意可得,,∴当x=1时,分式的值为零.故选B.【点睛】本题考查分式的值何时为0,熟知分式值为0条件:分子为0且分母不为0是解题的关键.8、A【分析】根据分子等于零,且分母不等于零列式求解即可.【详解】由题意得a-1=0且1a+b≠0,解得a=1,b≠-1.故选A.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.9、D【分析】能够估算无理数的范围,结合数轴找到点即可.【详解】因为无理数大于,在数轴上表示大于的点为点;故选D.【点睛】本题考查无理数和数轴的关系;能够准确估算无理数的范围是解题的关键.10、C【分析】利用二次根式的加减法对、进行判断;根据二次根式的乘法法则对进行判断;利用完全平方公式对进行判断.【详解】解:、,所以选项错误;、,所以选项错误;、,所以选项正确;、,所以选项错误.故选:.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.二、填空题(每小题3分,共24分)11、1.【解析】试题分析:∵,∴4算术平方根为1.故答案为1.考点:算术平方根.12、10:51【解析】由镜面对称的特点可知:该电子表的实际读数是:10:51.故答案为10:51.13、10cm【分析】根据三角形内角和定理可求得三个角的度数分别为30°,60°,90°,再根据30°角所对的直角边是斜边的一半即可求解.【详解】∵三角形三个内角的度数之比为,∴三个角的度数分别为60°,30°,90°,∵最短的边长是5cm,∴最长的边的长为10cm.故答案为:10cm.【点睛】此题主要考查含30度角的直角三角形的性质及三角形内角和定理的综合运用.14、1【解析】根据图得:1<p<2,+=p-1+2-p=1.15、27【解析】∵BE⊥AC,AD=CD,

∴AB=CB,即△ABC为等腰三角形,

∴BD平分∠ABC,即∠ABE=∠CBE=∠ABC=27°,

在△ABD和△CED中,,∴△ABD≌△CED(SAS),

∴∠E=∠ABE=27°.

故答案是:27.16、1【分析】根据点A、A1的坐标得到平移的规律,即可求出点B平移后的点B1的坐标,由此得到答案.【详解】解:∵点A(2,0)先向上平移1个单位,再向右平移1个单位得到点A1(1,1),∴线段AB先向上平移1个单位,再向右平移1个单位得到线段A1B1,∴点B(0,1)先向上平移1个单位,再向右平移1个单位得到点B1,∴a=0+1=1,1+1=b,∴a+b=1+2=1.故答案为:1.【点睛】此题考查点平移的规律:纵坐标上加下减,横坐标左减右加,正确掌握规律是解题的关键.17、3【分析】根据无理数的概念,即可求解.【详解】无理数有:π、、1.313113…(相邻两个3之间依次多一个1)共3个.故答案为:3【点睛】本题主要考查无理数的概念,掌握“无限不循环小数是无理数”是解题的关键.18、58【分析】根据角平分线的定义和三角形外角性质然后整理得到∠BAC=2∠P,代入数据进行计算即可得解.【详解】∵BP、CP分别是∠ABC和∠ACD的平分线,

∴∠ACD=2∠PCD,∠ABC=2∠PBC,由三角形的外角性质得,∠ACD=∠BAC+∠ABC,∠PCD=∠P+∠PBC,∴∠BAC+∠ABC=∠ACD=2∠PCD=2(∠P+∠PBC)=2∠P+2∠PBC=2∠P+∠ABC,∴∠BAC=2∠P,∵∠P=29,∴∠BAC=58.故答案为:58.【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和,角平分线的定义,熟记性质并准确识图最后求出∠BAC=2∠P是解题的关键.三、解答题(共66分)19、;取x=0,原式=1.【分析】先计算括号内分式的加法,再把除法化为乘法,约分后即可化简题目中的式子;再从-1,0,1中选择一个使得原分式有意义的值代入即可解答本题.【详解】解:原式==•(x+1)(x-1)=x2+1,

∵x≠±1,

∴取x=0,

当x=0时,原式=1.【点睛】本题考查分式的化简求值,解答本题的关键是根据分式的四则运算法则及运算顺序进行计算,易错点是没有考虑选取的x值应满足原分式有意义的条件.20、原式【解析】先求出x、y的值,再把原式化简,最后代入求出即可.【详解】试题解析:原式,∵,∴,原式.21、原计划每天修路的长度为100米【分析】本题的关键语是:“提前1天完成任务”;等量关系为:原计划用的时间﹣实际所用的时间=1.而工作时间=工作总量÷工作效率.【详解】解:设原计划每天修路的长度为x米,依题意得:,解得x=100,经检验,x=100是所列方程的解.答:原计划每天修路的长度为100米.【点睛】找等量关系,列式子,计算求解22、(1)证明见解析(2)6【分析】(1)连接OC,根据题意可证得∠CAD+∠DCA=90°,再根据角平分线的性质,得∠DCO=90°,则CD为O的切线;(2)过O作OF⊥AB,则∠OCD=∠CDA=∠OFD=90°,得四边形OCDF为矩形,设AD=x,在Rt△AOF中,由勾股定理得(5-x)+(6-x)=25,从而求得x的值,由勾股定理得出AB的长.【详解】(1)证明:连接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴CD⊥OC,CO为O半径,∴CD为O的切线;(2)过O作OF⊥AB,垂足为F,∴∠OCD=∠CDA=∠OFD=90∘,∴四边形DCOF为矩形,∴OC=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6−x,∵O的直径为10,∴DF=OC=5,∴AF=5−x,在Rt△AOF中,由勾股定理得AF+OF=OA.即(5−x)+(6−x)=25,化简得x−11x+18=0,解得.∵CD=6−x大于0,故x=9舍去,∴x=2,从而AD=2,AF=5−2=3,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6.23、,1.【分析】先把括号内通分,再进行减法运算,接着把除法运算化为乘法运算,则约分得到原式=,然后根据分式有意义的条件把m=1代入计算即可.【详解】解:原式===,∵m=2或﹣2或3时,原式没有意义,∴m只能取1,当m=1时,原式==1.【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.24、(3)直线AB的解析式为:y=﹣x+3;(3)BE=3;(3)C的坐标为(3,3).【解析】(3)根据A(3,0),B(0,3)可得OA=OB=3,得出△AOB是等腰直角三角形,∠OBA=45°,进而求出直线AB的解析式;(3)作CF⊥l于F,CG⊥y轴于G,利用ASA证明Rt△OGC≌Rt△EFC(ASA),得出EF=OG=3,那么BE=3;(3)设C的坐标为(m,-m+3).分E在点B的右侧与E在点B的左侧两种情况进行讨论即可.【详解】(3)∵A(3,0),B(0,3),∴OA=OB=3.∵∠AOB=90°,∴∠OBA=45°,∴直线AB的解析式为:y=﹣x+3;(3)作CF⊥l于F,CG⊥y轴于G,∴∠OGC=∠EFC=90°.∵点C的横坐标为3,点C在y=﹣x+3上,∴C(3,3),CG=BF=3,OG=3.∵BC平分∠OBE,∴CF=CG=3.∵∠OCE=∠GCF=90°,∴∠OCG=∠ECF,∴Rt△OGC≌Rt△EFC(ASA),∴EF=OG=3,∴BE=3;(3)设C的坐标为(m,﹣m+3).当E在点B的右侧时,由(3)知EF=OG=m﹣3,∴m﹣3=﹣m+3,∴m=3,∴C的坐标为(3,3);当E在点B的左侧时,同理可得:m+3=﹣m+3,∴m=3,∴C的坐标为(3,3).【点睛】此题考查一次函数,等腰直角三角形的性质,全等三角形的判定与性质,解题关键在于作辅助线25、(1)2,3,-1;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论