版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市黄浦区2025届数学八年级第一学期期末综合测试模拟试题试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列运算正确的是()A.a+a=a2 B.a6÷a3=a2 C.(a+b)2=a2+b2 D.(ab3)2=a2b62.如图,四边形中,,,将四边形沿对角线折叠,点恰好落在边上的点处,,则的度数是()A.15° B.25° C.30° D.40°3.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,且PE=3,AP=5,点F在边AB上运动,当运动到某一位置时△FAP面积恰好是△EAP面积的2倍,则此时AF的长是()A.10 B.8 C.6 D.44.计算的结果是()A.a2 B.-a2 C.a4 D.-a45.关于x的分式方程的解为正实数,则实数m可能的取值是()A.2 B.4 C.6 D.76.中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为82分,82分,245分2,190分2.那么成绩较为整齐的是()A.甲班 B.乙班 C.两班一样整齐 D.无法确定7.不等式3(x﹣1)≤5﹣x的非负整数解有(
)A.1个B.2个C.3个D.4个8.如图,在小正三角形组成的网格中,已有7个小正三角形涂黑,还需要涂黑个小正三角形,使它们和原来涂黑的小正三角形组成新的图案既是轴对称图形又是中心对称图形,则的最小值为()A.3 B.4 C.5 D.69.如图所示,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下四个结论:①△ACD≌△BCE;②AD=BE;③∠AOB=60°;④△CPQ是等边三角形.其中正确的是()A.①②③④ B.②③④ C.①③④ D.①②③10.下列因式分解正确的是()A.x2–9=(x+9)(x–9) B.9x2–4y2=(9x+4y)(9x–4y)C.x2–x+=(x−)2 D.–x2–4xy–4y2=–(x+2y)211.已知一次函数,函数值随自变量的增大而减小,那么的取值范围是()A. B. C. D.12.估计5﹣的值应在()A.5和6之间 B.6和7之间 C.7和8之间 D.8和9之间二、填空题(每题4分,共24分)13.若(x+m)(x+3)中不含x的一次项,则m的值为__.14.关于x,y的方程组的解是,其中y的值被盖住了.不过仍能求出m,则m的值是___.15.在平面直角坐标系中,点B(1,2)是由点A(-1,2)向右平移a个单位长度得到,则a的值为______16.0.000608用科学记数法表示为.17.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=.18.一个正n边形的一个外角等于72°,则n的值等于_____.三、解答题(共78分)19.(8分)如图,在△ABC中,∠ACB=90°,∠ABC和∠CAB的平分线交于点O,求∠AOB的度数.20.(8分)某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC=;(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC与∠A的数量关系,并证明.21.(8分)物华小区停车场去年收费标准如下:中型汽车的停车费为600元/辆,小型汽车的停车费为400元/辆,停满车辆时能收停车费23000元,今年收费标准上调为:中型汽车的停车费为1000元/辆,小型汽车的停车费为600元/辆,若该小区停车场容纳的车辆数没有变化,今年比去年多收取停车费13000元.(1)该停车场去年能停中、小型汽车各多少辆?(2)今年该小区因建筑需要缩小了停车场的面积,停车总数减少了11辆,设该停车场今年能停中型汽车辆,小型汽车有辆,停车场收取的总停车费为元,请求出关于的函数表达式;(3)在(2)的条件下,若今年该停车场停满车辆时小型汽车的数量不超过中型汽车的2倍,则今年该停车场最少能收取的停车费共多少元?22.(10分)在中,,点、分别在、上,,与相交于点.(1)求证:;(2)求证:.23.(10分)化简:(1)(2)24.(10分)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°.25.(12分)如图,边长为a,b的矩形,它的周长为14,面积为10,求下列各式的值:(1)a2b+ab2;(2)a2+b2+ab.26.如图,直角坐标系中,直线分别与轴、轴交于点,点,过作平行轴的直线,交于点,点在线段上,延长交轴于点,点在轴正半轴上,且.(1)求直线的函数表达式.(2)当点恰好是中点时,求的面积.(3)是否存在,使得是直角三角形?若存在,直接写出的值;若不存在,请说明理由.
参考答案一、选择题(每题4分,共48分)1、D【分析】直接利用合并同类项法则、同底数幂的除法运算法则、幂的乘方运算法则和完全平方公式分别进行计算,再进行判断.【详解】A、a+a=2a,故此选项错误;B、a6÷a3=a6-3=a3,故此选项错误;C、(a+b)2=a2+b2+2ab,故此选项错误;D、(ab3)2=a2b6,故此选项计算正确.故选D.【点睛】考查了幂的乘方运算以及同底数幂的除法运算、合并同类项等知识,正确掌握运算法则是解题关键.2、B【分析】由题意利用互余的定义和平行线的性质以及轴对称的性质,进行综合分析求解.【详解】解:∵∠A′BC=20°,,∴∠BA′C=70°,∴∠DA′B=110°,∴∠DAB=110°,∵,∴∠ABC=70°,∴∠ABA′=∠ABC-∠A′BC=70°-20°=50°,∵∠A′BD=∠ABD,∴∠A′BD=∠ABA′=25°.故选:B.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变进行分析.3、B【分析】过P作PM⊥AB于M,根据角平分线性质求出PM=3,根据已知得出关于AF的方程,求出方程的解即可.【详解】过P作PM⊥AB于M,∵点P是∠BAC的平分线AD上一点,PE⊥AC于点E,且PE=3,∴PM=PE=3,∵AP=5,∴AE=4,∵△FAP面积恰好是△EAP面积的2倍,∴×AF×3=2××4×3,∴AF=8,故选B.考点:角平分线的性质.4、D【分析】直接利用同底数幂的乘法运算法则计算得出答案.【详解】解:,故选D.【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.5、B【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【详解】解:方程两边同乘(x-1)得,x+m-1m=3x-6,解得,由题意得,>0解得,m<6,又∵≠1∴m≠1,∴m<6且m≠1.故选:B【点睛】本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.6、B【分析】根据方差的意义知,方差越小,波动性越小,故成绩较为整齐的是乙班.【详解】由于乙的方差小于甲的方差,故成绩较为整齐的是乙班.故选B.【点睛】此题主要考查了方差,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7、C【解析】试题分析:解不等式得:3x﹣3≤5﹣x,4x≤8,x≤2,所以不等式的非负整数解有0、1、2这3个,故答案选C.考点:一元一次不等式组的整数解.8、C【分析】根据轴对称图形和中心对称图形的概念即可得.【详解】解:如图所示,再涂黑5个小正三角形,即可使得它们和原来涂黑的小正三角形组成新的图案既是轴对称图形又是中心对称图形,故答案为:C.【点睛】本题考查了轴对称图形和中心对称图形的概念,掌握基本概念是解题的关键.9、A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】∵△ABC和△CDE是正三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,
∴∠ACD=∠BCE,
∴△ADC≌△BEC(SAS),故①正确,
∴AD=BE,故②正确;
∵△ADC≌△BEC,
∴∠ADC=∠BEC,
∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,故③正确;
∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,
∴△CDP≌△CEQ(ASA).
∴CP=CQ,
∴∠CPQ=∠CQP=60°,
∴△CPQ是等边三角形,故④正确;
故选A.【点睛】考查等边三角形的性质及全等三角形的判定等知识点;得到三角形全等是正确解答本题的关键.10、D【分析】利用以及进行因式分解判断即可.【详解】A.原式=(x+3)(x–3),选项错误;B.原式=(3x+2y)(3x–2y),选项错误;C.原式=(x–)2,选项错误;D.原式=–(x2+4xy+4y2)=–(x+2y)2,选项正确.故选D.【点睛】本题主要考查了因式分解,熟练掌握相关公式是解题关键.11、C【解析】解:由题意得:1+2m<0,解得:m<.故选C.12、C【分析】先化简二次根式,合并后,再根据无理数的估计解答即可.【详解】5﹣=,∵49<54<64,∴7<<8,∴5﹣的值应在7和8之间,故选C.【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.二、填空题(每题4分,共24分)13、-1【分析】把式子展开,找到x的一次项的所有系数,令其为2,可求出m的值.【详解】解:∵(x+m)(x+1)=x2+(m+1)x+1m,又∵结果中不含x的一次项,∴m+1=2,解得m=-1.【点睛】本题主要考查了多项式乘多项式的运算,注意当多项式中不含有哪一项时,即这一项的系数为2.14、【分析】首先将代入方程组,然后求解关于的二元一次方程组,即可得解.【详解】将代入方程组,得解得∴m的值是,故答案为:.【点睛】此题主要考查二元一次方程组的求解,熟练掌握,即可解题.15、1【分析】根据平面直角坐标系中,点坐标的平移规律即可得.【详解】点向右平移a个单位长度得到解得故答案为:1.【点睛】本题考查了平面直角坐标系中,点坐标的平移规律,掌握点坐标的平移规律是解题关键.设某点坐标为,则有:(1)其向右平移a个单位长度得到的点坐标为;(1)其向左平移a个单位长度得到的点坐标为;(3)其向上平移b个单位长度得到的点坐标为;(4)其向下平移b个单位长度得到的点坐标为,规律总结为“左减右加,上加下减”.16、6.08×10﹣1【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000608用科学记数法表示为6.08×10﹣1,故答案为6.08×10﹣1.考点:科学记数法—表示较小的数.17、1【解析】试题分析:如图,∠A=180°﹣50°﹣60°=70°,∵△ABC≌△DEF,∴EF=BC=1,即x=1.18、1.【分析】可以利用多边形的外角和定理求解.【详解】解:∵正n边形的一个外角为72°,∴n的值为360°÷72°=1.故答案为:1【点睛】本题考查了多边形外角和,熟记多边形的外角和等于360度是解题的关键.三、解答题(共78分)19、135°【解析】根据三角形的内角和定理求出∠ABC+∠BAC,再根据角平分线的定义求出∠OAB+∠OBA,然后利用三角形的内角和定理列式计算即可得解.【详解】∵∠C=90°,∴∠ABC+∠BAC=180°﹣90°=90°.∵∠CAB与∠CBA的平分线相交于O点,∴∠OAB+∠OBA=12(∠ABC+∠BAC)=12×90°=在△AOB中,∠AOB=180°﹣(∠OAB+∠OBA)=180°﹣45°=135°.【点睛】本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.20、(1)∠BPC=122°;(2)∠BEC=;(3)∠BQC=90°﹣∠A,证明见解析【分析】(1)根据三角形的内角和化为角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠E与∠1表示出∠2,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠EBC与∠ECB,然后再根据三角形的内角和定理列式整理即可得解.【详解】解:(1)、分别平分和,,,,,,,,故答案为:;(2)和分别是和的角平分线,,,又是的一外角,,,是的一外角,;(3),,,,,结论:.【点睛】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.21、(1)该停车场去年能停中型汽车15辆,小型汽车35辆;(2);(3)今年该停车场最少能收取停车费共28600元.【分析】(1)设该停车场去年能停中型汽车辆,小型汽车辆,根据等量关系,列出二元一次方程组,即可求解;(2)由题意得:,根据“总停车费=中型汽车停车费+小型汽车费”,即可得到关于的函数表达式;(3)根据题意,列出关于x的不等式,得到x的取值范围,再根据关于的函数表达式,即可求解.【详解】(1)设该停车场去年能停中型汽车辆,小型汽车辆根据题意,得:,解得:,答:该停车场去年能停中型汽车15辆,小型汽车35辆;(2)设该停车场去年能停中型汽车辆,小型汽车辆,则,根据题意,得:,(3)由题意,得:,,∴,解得:.∵,∴的值随的增大而增大,∴当时,值最小,最小值为:(元).答:今年该停车场最少能收取停车费共28600元.【点睛】本题主要考查二元一次方程组,一元一次不等式,一次函数的综合应用,根据题意,找到等量关系和不等量关系,列出方程,函数和不等式,是解题的关键.22、(1)见详解;(2)见详解【分析】(1)根据等腰三角形的性质等边对等角、全等三角形的判定进行推导即可;(2)由(1)的结论根据全等三角形的性质可得,再利用等式的性质可得,最后由等腰三角形的判定等角对等边可得结论.【详解】(1)证明:∵∴在和中∴(2)证明:∵∴∴.【点睛】本题考查了等腰三角形的性质和判定、全等三角形的判定和性质、等式的性质等知识点,体现了逻辑推理的核心素养.23、(1);(2)【分析】(1)根据二次根式的运算法则,即可得到答案;(2)根据平方差和完全平方公式,结合去括号法则与合并同类项法则,即可得到答案.【详解】(1)原式==;(2)原式===.【点睛】本题主要考查二次根式的化简与整式的化简,熟练掌握二次根式的运算法则,乘法公式以及合并同类项,去括号法则,是解题的关键.24、见解析【分析】连接AC.首先根据勾股定理求得AC的长,再根据勾股定理的逆定理求得∠D=90°,进
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学习部工作计划范文
- 吉林彩色透水沥青施工方案
- 合肥阳台防水补漏施工方案
- 加油站围墙拆除施工方案
- 2024高一体育教师教学工作计划范文
- 2024部队财务工作计划范文
- 扶贫办工作总结和工作计划
- 2024秋季幼儿园保教工作计划范文
- 《科普健康知识讲座》课件
- 《纳米材料》课件
- 6《我们神圣的国土 好山好水好风光》(教学设计)-2024-2025学年道德与法治五年级上册统编版
- 2025年公务员考试时政专项测验100题及答案
- 【泰禾房地产集团偿债能力探析案例报告(定量论文)7800字】
- 语文第15课《梅岭三章》课件 2024-2025学年统编版语文七年级上册
- 岩体力学与工程智慧树知到答案2024年合肥工业大学
- 2025届高考数学复习 函数导数 备考策略分析课件
- 科室VTE工作总结课件
- 二年级上册数学教案-小小测量员 (2)-西师大版
- 《2023-2024中国区块链发展年度报告》
- 六年级上册美术说课稿 -第7课《 变化多样的脸谱》桂美版(广西版)
- 人教版七年级数学上册3.4 第3课时《 球赛积分表问题》说课稿1
评论
0/150
提交评论