2025届重庆市兼善教育集团数学八上期末达标测试试题含解析_第1页
2025届重庆市兼善教育集团数学八上期末达标测试试题含解析_第2页
2025届重庆市兼善教育集团数学八上期末达标测试试题含解析_第3页
2025届重庆市兼善教育集团数学八上期末达标测试试题含解析_第4页
2025届重庆市兼善教育集团数学八上期末达标测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届重庆市兼善教育集团数学八上期末达标测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.下列三组线段能组成三角形的是()A.1,2,3 B.1,2,4 C.3,4,5 D.3,3,62.计算的结果是()A.x+1 B. C. D.3.如图,若,,添加下列条件不能直接判定的是()A. B.C. D.4.的值是()A.16 B.2 C. D.5.一个缺角的三角形ABC残片如图所示,量得∠A=60°,∠B=75°,则这个三角形残缺前的∠C的度数为()A.75° B.60° C.45° D.40°6.如图,为等边三角形,为延长线上一点,CE=BD,平分,下列结论:(1);(2);(3)是等边三角形,其中正确的个数为()A.0个 B.1个 C.2个 D.3个7.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A. B. C. D.8.三角形边长分别为下列各数,其中能围成直角三角形的是()A.2,3,4 B.3,4,5 C.4,5,6 D.5,6,79.如图,在平面直角坐标系中,直线AC:y=kx+b与x轴交于点B(-2,0),与y轴交于点C,则“不等式kx+b≥0的解集”对应的图形是()A.射线BD上的点的横坐标的取值范围 B.射线BA上的点的横坐标的取值范围C.射线CD上的点的横坐标的取值范围 D.线段BC上的点的横坐标的取值范围10.如图,△ABC≌△CDA,则下列结论错误的是()A.AC=CA B.AB=AD C.∠ACB=∠CAD D.∠B=∠D11.下列命题中不正确的是()A.全等三角形的对应边相等 B.全等三角形的面积相等C.全等三角形的周长相等 D.周长相等的两个三角形全等12.多项式12ab3c-8a3b的公因式是()A.4ab2 B.-4abc C.-4ab2 D.4ab二、填空题(每题4分,共24分)13.计算:___.14.如果一粒芝麻约有0.000002千克,那么10粒芝麻用科学记数法表示为_______千克.15.化简:的结果是______.16.若m+n=1,mn=2,则的值为_____.17.计算:______.18.如图,点B的坐标为(4,4),作BA⊥x轴,BC⊥y轴,垂足分别为A,C,点D为线段OA的中点,点P从点A出发,在线段AB、BC上沿A→B→C运动,当OP=CD时,点P的坐标为_________________________.三、解答题(共78分)19.(8分)今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.(1)试问去年每吨大蒜的平均价格是多少元?(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?20.(8分)如图,△AOB和△ACD是等边三角形,其中AB⊥x轴于E点,点E坐标为(3,0),点C(5,0).(1)如图①,求BD的长;(2)如图②,设BD交x轴于F点,求证:∠OFA=∠DFA.21.(8分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.22.(10分)已知如图,长方体的长,宽,高,点在上,且,一只蚂蚁如果沿沿着长方体的表面从点爬到点,需要爬行的最短距离是多少?23.(10分)为了比较+1与的大小,小伍和小陆两名同学对这个问题分别进行了研究.(1)小伍同学利用计算器得到了,,所以确定+1(填“>”或“<”或“=”)(2)小陆同学受到前面学习在数轴上用点表示无理数的启发,构造出所示的图形,其中∠C=90°,BC=3,D在BC上且BD=AC=1.请你利用此图进行计算与推理,帮小陆同学对+1和的大小做出准确的判断.24.(10分)(1)问题:如图在中,,,为边上一点(不与点,重合),连接,过点作,并满足,连接.则线段和线段的数量关系是_______,位置关系是_______.(2)探索:如图,当点为边上一点(不与点,重合),与均为等腰直角三角形,,,.试探索线段,,之间满足的等量关系,并证明你的结论;(3)拓展:如图,在四边形中,,若,,请直接写出线段的长.25.(12分)如图,正方形的边,在坐标轴上,点的坐标为.点从点出发,以每秒1个单位长度的速度沿轴向点运动;点从点同时出发,以相同的速度沿轴的正方向运动,规定点到达点时,点也停止运动,连接,过点作的垂线,与过点平行于轴的直线相交于点,与轴交于点,连接,设点运动的时间为秒.(1)线段(用含的式子表示),点的坐标为(用含的式子表示),的度数为.(2)经探究周长是一个定值,不会随时间的变化而变化,请猜测周长的值并证明.(3)①当为何值时,有.②的面积能否等于周长的一半,若能求出此时的长度;若不能,请说明理由.26.如图,△ABC是等边三角形,△ACE是等腰三角形,∠AEC=120°,AE=CE,F为BC中点,连接AE.(1)直接写出∠BAE的度数为;(2)判断AF与CE的位置关系,并说明理由.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据三角形的三边关系逐一判断即可.【详解】A.1+2=3,不符合三角形的三边关系,不能构成三角形,故本选项不符合题意;B.1+2<4,不符合三角形的三边关系,不能构成三角形,故本选项不符合题意;C.3+4>5,符合三角形的三边关系,能构成三角形,故本选项符合题意;D.3+3=6,不符合三角形的三边关系,不能构成三角形,故本选项不符合题意.故选C.【点睛】此题考查的是判断三条线段是否能构成三角形,掌握三角形的三边关系是解决此题的关键.2、B【解析】按照分式的运算、去分母、通分、化简即可.【详解】==.【点睛】此题主要考察分式的运算.3、A【分析】根据全等三角形的判定方法:SSS、SAS、ASA、AAS、HL,结合选项进行判定,然后选择不能判定全等的选项.【详解】A、添加条件AM=CN,仅满足SSA,不能判定两个三角形全等;

B、添加条件AB=CD,可用SAS判定△ABM≌△CDN;

C、添加条件∠M=∠N,可用ASA判定△ABM≌△CDN;

D、添加条件∠A=∠NCD,可用AAS判定△ABM≌△CDN.

故选:A.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4、B【分析】根据算术平方根的定义求值即可.【详解】=1.故选:B.【点睛】本题考查算术平方根,属于基础题型.5、C【分析】利用三角形内角和定理求解即可.【详解】因为三角形内角和为180°,且∠A=60°,∠B=75°,所以∠C=180°–60°–75°=45°.【点睛】三角形内角和定理是常考的知识点.6、D【分析】根据等边三角形的性质得出,,求出,根据可证明即可证明与;根据全等三角形的性质得出,,求出,即可判断出是等边三角形.【详解】是等边三角形,,,,平分,,,在和中,,故(2)正确;∴∴,故(1)正确;∴是等边三角形,故(3)正确.∴正确有结论有3个.故选:D.【点睛】本题主要考查了全等三角形的判定与性质以及等边三角形的性质,要灵活运用等边三角形的三边相等、三个角相等的性质.7、B【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴因此.【详解】A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.【点睛】考核知识点:轴对称图形识别.8、B【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、22+32≠42,故不是直角三角形,故此选项不符合题意;B、32+42=52,故是直角三角形,故此选项符合题意;C、42+52≠62,故不是直角三角形,故此选项不符合题意;D、52+62≠72,故不是直角三角形,故此选项不符合题意;故选B.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.9、A【分析】根据图象即可得出不等式kx+b≥0的解集,从而判断出结论.【详解】解:由图象可知:不等式kx+b≥0的解集为x≤-2∴“不等式kx+b≥0的解集”对应的图形是射线BD上的点的横坐标的取值范围故选A.【点睛】此题考查的是根据一次函数的图象和不等式,求自变量的取值范围,掌握利用一次函数的图象,解一元一次不等式是解决此题的关键.10、B【解析】∵△ABC≌△CDA,∴AB=CD,AC=CA,BC=DA,∠ACB=∠CAD,∠B=∠D,∠DCA=∠BAC.故B选项错误.11、D【解析】A.全等三角形的对应边相等,正确,故本选项错误;B.全等三角形的面积相等,正确,故本选项错误;C.全等三角形的周长相等,正确,故本选项错误;D.周长相等的两个三角形全等,错误,故本选项正确,故选D.12、D【分析】利用公因式的概念,进而提出即可.【详解】多项式12ab3c-8a3b的公因式是4ab,故选:D.【点睛】此题考查了公因式,熟练掌握提取公因式的方法是解本题的关键.二、填空题(每题4分,共24分)13、-6【分析】利用零指数幂、负整数指数幂以及乘方的意义计算即可得到结果.【详解】故答案是:【点睛】本题综合考查了乘方的意义、零指数幂以及负整数指数幂.在计算过程中每一部分都是易错点,需认真计算.14、2×10-1.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000002×10=0.000020.00002用科学记数法表示为2×10-1千克,故答案为:2×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15、【解析】原式=.16、【解析】17、【分析】先计算积的乘方,再利用单项式除单项式法则计算.【详解】解:,故答案为:.【点睛】本题考查积的乘方公式,单项式除单项式.

单项式除以单项式,把单项式的系数、同底数幂分别相除后,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.18、(2,4)或(4,2).【解析】试题分析:①当点P在正方形的边AB上时,在Rt△OCD和Rt△OAP中,∵OC=OA,CD=OP,∴Rt△OCD≌Rt△OAP,∴OD=AP,∵点D是OA中点,∴OD=AD=OA,∴AP=AB=2,∴P(4,2);②当点P在正方形的边BC上时,同①的方法,得出CP=BC=2,∴P(2,4).综上所述:P(2,4)或(4,2).故答案为(2,4)或(4,2).考点:全等三角形的判定与性质;坐标与图形性质;分类讨论.三、解答题(共78分)19、(1)去年每吨大蒜的平均价格是3500元;(2)应将120吨大蒜加工成蒜粉,最大利润为228000元.【分析】(1)设去年每吨大蒜的平均价格是x元,则第一次采购的平均价格为(x+500)元,第二次采购的平均价格为(x-500)元,根据第二次的采购数量是第一次采购数量的两倍,据此列方程求解;(2)先求出今年所采购的大蒜数,根据采购的大蒜必需在30天内加工完毕,蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,据此列不等式组求解,然后求出最大利润.【详解】(1)设去年每吨大蒜的平均价格是x元,由题意得,解得:x=3500,经检验:x=3500是原分式方程的解,且符合题意,答:去年每吨大蒜的平均价格是3500元;(2)由(1)得,今年的大蒜数为:×3=300(吨),设应将m吨大蒜加工成蒜粉,则应将(300-m)吨加工成蒜片,由题意得,解得:100≤m≤120,总利润为:1000m+600(300-m)=400m+180000,当m=120时,利润最大,为228000元.答:应将120吨大蒜加工成蒜粉,最大利润为228000元.【点睛】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.20、(1)BD=5;(2)证明见解析.【分析】(1)先由等边三角形的性质得出OA=AB,AC=AD,∠OAB=∠CAD=60°进而得出∠OAC=∠BAD,即可判断出△AOC≌△ABD即可得出结论;(2)借助(1)得出的△AOC≌△ABD,得出∠ABD=∠AOC=30°,进而求出∠BFO=60°,再判断出,△AOF≌△BOF即可求出∠OFA=∠DFA=60°.【详解】(1)∵点C(5,0).∴OC=5,∵△AOB和△ACD是等边三角形,∴OA=AB,AC=AD,∠OAB=∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴BD=OC=5;(2)∵△AOB是等边三角形,且AB⊥x轴于E点,∴∠AOE=∠BOE=30°,由(1)知,△AOC≌△ABD,∴∠ABD=∠AOC=30°,∴∠BFO=90°-∠ABD=60°,在△AOF和△BOF中,,∴△AOF≌△BOF,∴∠AFO=∠BFO=60°,根据平角的定义得,∠DFA=180°-∠AFO-∠BFO=60°,∴∠OFA=∠DFA.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等边三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键,是一道简单的基础题.21、(1)家与图书馆之间路程为4000m,小玲步行速度为100m/s;(2)自变量x的范围为0≤x≤;(3)两人相遇时间为第8分钟.【分析】(1)认真分析图象得到路程与速度数据;(2)采用方程思想列出小东离家路程y与时间x之间的函数关系式;(3)两人相遇实际上是函数图象求交点.【详解】解:(1)结合题意和图象可知,线段CD为小东路程与时间函数图象,折现O﹣A﹣B为小玲路程与时间图象则家与图书馆之间路程为4000m,小玲步行速度为(4000-2000)÷(30-10)=100m/s(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,∴他离家的路程y=4000﹣300x,自变量x的范围为0≤x≤,(3)由图象可知,两人相遇是在小玲改变速度之前,∴4000﹣300x=200x解得x=8∴两人相遇时间为第8分钟.故答案为(1)4000,100;(2)y=4000﹣300x,0≤x≤;(3)第8分钟.【点睛】本题考查了一次函数的应用,解决本题的关键是能从函数的图象中获取相关信息.22、需要爬行的最短距离是cm.【分析】将长方体沿CH、HE、BE剪开,然后翻折,使面ABCD和面BEHC在同一个平面内,连接AM;或将长方体沿CH、GD、GH剪开,然后翻折,使面ABCD和面DCHG在同一个平面内,连接AM;或将长方体沿AB、AF、EF剪开,然后翻折,使面ABEF和面BEHC在同一个平面内,连接AM;再分别在Rt△ADM、Rt△ABM、Rt△ACM中,利用勾股定理求得AM的长,比较大小即可求得需要爬行的最短路程.【详解】解:将长方体沿CH、HE、BE剪开,然后翻折,使面ABCD和面BEHC在同一个平面内,连接AM,如图1,由题意可得:MD=MC+CD=5+10=15cm,AD=15cm,在Rt△ADM中,根据勾股定理得:AM=cm;将长方体沿CH、GD、GH剪开,然后翻折,使面ABCD和面DCHG在同一个平面内,连接AM,如图2,由题意得:BM=BC+MC=5+15=20cm,AB=10cm,在Rt△ABM中,根据勾股定理得:AM=cm,将长方体沿AB、AF、EF剪开,然后翻折,使面ABEF和面BEHC在同一个平面内,连接AM,如图3,由题意得:AC=AB+CB=10+15=25cm,MC=5cm,在Rt△ACM中,根据勾股定理得:AM=cm,∵,,,∴,则需要爬行的最短距离是cm.【点睛】此题考查了最短路径问题,利用了转化的思想,解题的关键是将立体图形展开为平面图形,利用勾股定理求解.23、(1)>;(2)见解析.【解析】(1)根据题目给出的数值判断大小即可;(2)根据勾股定理求出AB,再根据三角形的三边关系判断即可.【详解】(1)>;(2),,.【点睛】本题考查了勾股定理与三角形的三边关系,解题的关键是熟练的掌握勾股定理的运算与三角形的三边关系.24、(1)=;⊥;(2)+=;(3)2【分析】(1)根据同角的余角相等得出∠BAD=∠CAE,可证△ADB≌△AEC,由全等三角形的性质即可得出结果;(2)连结CE,同(1)的方法证得△ADB≌△AEC,根据全等三角形的性质转换角度,可得△DCE为直角三角形,即可得,,之间满足的等量关系;(3)在AD上方作EA⊥AD,连结DE,同(2)的方法证得△DCE为直角三角形,由已知和勾股定理求得DE的长,再根据等腰直角三角形的性质和勾股定理即可求得AD的长.【详解】解:=,⊥,理由如下:∵,,∴∠ABC=∠ACB=45°,∵,∴,∴,即,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE,∠ABD=∠ACE=45°,∴∠ACB+∠ACE=90°,即⊥,故答案为:=;⊥.(2)+=,证明如下:如图,连结CE,∵与均为等腰直角三角形,∴∠ABC=∠ACB=45°,,即,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE,∠ABD=∠ACE=45°,∴∠ACB+∠ACE=90°,即⊥,则△DCE为直角三角形,∴+=,∴+=;(3)如图,作EA⊥AD,使得AE=AD,连结DE、CE,∵,∴,AB=AC,∵,AE=AD,∴,,∴,即,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE,∵,则△DCE为直角三角形,∵,,∴,则,在Rt△ADE中,AD=AE,∴,则.【点睛】本题是四边形综合题,主要考查了全等三角形的判定与性质、勾股定理、等腰直角三角形的性质,解题的关键是合理得添加辅助线找出两个三角形全等.25、(1),(t,t),45°;(2)△POE周长是一个定值为1,理由见解析;(3)①当t为(5-5)秒时,BP=BE;②能,PE的长度为2.【分析】(1)由勾股定理得出BP的长度;易证△BAP≌△PQD,从而得到DQ=AP=t,从而可以求出∠PBD的度数和点D的坐标.

(2)延长OA到点F,使得AF=CE,证明△FAB≌△ECB(SAS).得出FB=EB,∠FBA=∠EBC.再证明△FBP≌△EBP(SAS).得出FP=EP.得出EP=FP=FA+AP=CE+AP.即可得出答案;

(3)①证明Rt△BAP≌Rt△BCE(HL).得出AP=CE.则PO=EO=5-t.由等腰直角三角形的性质得出PE=PO=(5-t).延长OA到点F,使得AF=CE,连接BF,证明△FAB≌△ECB(SAS).得出FB=EB,∠FBA=∠EBC.证明△FBP≌△EBP(SAS).得出FP=EP.得出EP=FP=FA+AP=CE+AP.得出方程(5-t)=2t.解得t=5-5即可;

②由①得:当BP=BE时,AP=CE.得出PO=EO.则△POE的面积=OP2=5,解得OP=,得出PE=OP-=2即可.【详解】解:(1)如图1,

由题可得:AP=OQ=1×t=t,

∴AO=PQ.

∵四边形OABC是正方形,

∴AO=AB=BC=OC,∠BAO=∠AOC=∠OCB=∠ABC=90°.

∴BP=,

∵DP⊥BP,

∴∠BPD=90°.

∴∠BPA=90°-∠DPQ=∠PDQ.

∵AO=PQ,AO=AB,

∴AB=PQ.

在△BAP和△PQD中,,

∴△BAP≌△PQD(AAS).

∴AP=QD,BP=PD.

∵∠BPD=90°,BP=PD,

∴∠PBD=∠PDB=45°.

∵AP=t,

∴DQ=t

∴点D坐标为(t,t).

故答案为:,(t,t),45°.

(2)△POE周长是一个定值为1,理由如下:

延长OA到点F,使得AF=CE,连接BF,如图2所示.

在△FAB和△ECB中,,

∴△FAB≌△ECB(SAS).

∴FB=EB,∠FBA=∠EBC.

∵∠EBP=45°,∠ABC=90°,

∴∠ABP+∠EBC=45°.

∴∠FBP=∠FBA+∠ABP=∠EBC+∠ABP=45°.

∴∠FBP=∠EBP.

在△FBP和△EBP中,,

∴△FBP≌△EBP(SAS).

∴FP=EP.

∴EP=FP=FA+AP=CE+AP.

∴OP+PE+OE=OP+AP+CE+OE=AO+CO=5+5=1.

∴△POE周长是定值,该定值为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论