版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中山市重点中学2025届数学八年级第一学期期末达标测试试题测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则拼成长方形的面积是()A. B.C.m D.2.某同学统计了他家今年10月份打电话的次数及地时间,并列出了频数分布表:通话区时间x(分钟)通话频数(次数)2114852通话时间超过10分钟的频率是()A.0.28 B.0.3 C.0.5 D.0.73.如图,以点O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画出射线OB,则∠AOB=()A.30° B.45° C.60° D.90°4.已知:如图,四边形中,,.在边上求作点,则的最小值为()A. B. C. D.5.已知一组数据20、30、40、50、50、50、60、70、80,其中平均数、中位数、众数的大小关系是()A.平均数>中位数>众数 B.平均数<中位数<众数C.中位数<众数<平均数 D.平均数=中位数=众数6.如图,在矩形中,,动点满足,则点到两点距离之和的最小值为()A. B. C. D.7.已知(4+)•a=b,若b是整数,则a的值可能是()A. B.4+ C.4﹣ D.2﹣8.下列命题是真命题的是()A.如果a>b,a>c,那么b=cB.相等的角是对顶角C.一个角的补角大于这个角D.一个三角形中至少有两个锐角9.如图,将直尺与含角的三角尺摆放在一起,若,则的度数是()A. B. C. D.10.下面是“北”“比”“鼎”“射”四个字的甲骨文,其中不是轴对称图形的是()A. B. C. D.11.如图,△ABC中,∠C=90°,AD平分∠BAC,BC=10,BD=6,则点D到AB的距离是()A.4 B.5 C.6 D.712.下列说法正确的是()A.形如AB的式子叫分式 B.C.当x≠3时,分式xx-3无意义 D.分式2a2b与1ab二、填空题(每题4分,共24分)13.如图,中,厘米,厘米,点为的中点,如果点在线段上以厘米/秒的速度由点向点运动,同时,点在线段上由点向点运动.若点的运动速度为厘米/秒,则当与全等时,的值为__________.14.如图,四边形ABCD中,∠A=90°,AB=2,AD=,CD=3,BC=5,则四边形ABCD的面积是______.15.如图所示,∠1=130°,则∠A+∠B+∠C+∠D+∠E+∠F的度数为_____.16.如图,已知点.规定“把点先作关于轴对称,再向左平移1个单位”为一次变化.经过第一次变换后,点的坐标为_______;经过第二次变换后,点的坐标为_____;那么连续经过2019次变换后,点的坐标为_______.17.科学家测出某微生物长度为1.111145米,将1.111145用科学记数法表示为______.18.如图,点B在点A的南偏西方向,点C在点A的南偏东方向,则的度数为______________.三、解答题(共78分)19.(8分)如图,,点、分别在边、上,且,请问吗?为什么?20.(8分)如图,在四边形中,,是的中点,连接并延长交的延长线于点,点在边上,且.(1)求证:≌.(2)连接,判断与的位置关系并说明理由.21.(8分)已知2是的平方根,是的立方根,求的值.22.(10分)如图,在平面直角坐标系中,,,.(1)请画出关于轴对称的;(2)直接写出的面积为;(3)请仅用无刻度的直尺画出的平分线,保留作图痕迹.23.(10分)去年冬天某市遭遇持续暴雪天气,该市启用了清雪机,已知一台清雪机的工作效率相当于一名环卫工人工作效率的200倍,若用这台清雪机清理6000立方米的雪,要比120名环卫工人清理这些雪少用小时,试求一台清雪机每小时清雪多少立方米.24.(10分)如图,中,,平分交于点.求证:BC=AC+CD.25.(12分)某校八年级全体同学参加了爱心捐款活动,该校随机抽查了部分同学捐款的情况统计如图:(1)求出本次抽查的学生人数,并将条形统计图补充完整;(2)捐款金额的众数是___________元,中位数是_____________;(3)请估计全校八年级1000名学生,捐款20元的有多少人?26.如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).(1)在图中作出关于y轴对称的;(2)写出点的坐标(直接写答案);(3)在y轴上画出点P,使PB+PC最小.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据题意,利用大正方形的面积减去小正方形的面积表示出长方形的面积,再化简整理即可.【详解】根据题意,得:(2m+3)2-(m+3)2=[(2m+3)+(m+3)][(2m+3)-(m+3)]=(3m+6)m=3m2+6m.故选C.【点睛】本题主要考查平方差公式的几何背景,解决此题的关键是利用两正方形的面积表示出长方形的面积.2、B【分析】根据频率计算公式,频率等于频数与数据总数的比即可求解.【详解】通话时间超过10分钟的频率为:故选:B【点睛】本题主要掌握观察频数分布表,考查了频率计算公式,频率等于频数与数据总数的比.3、C【分析】首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.【详解】解:连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故选C.【点睛】本题考查了等边三角形的判定与性质,解题的关键是能根据题意得到OB=OA=AB.4、B【分析】作D点关于AB的对称点D',连接CD'交AB于P,根据两点之间线段最短可知此时PC+PD最小;再作D'E⊥BC于E,则EB=D'A=AD,先根据等边对等角得出∠DCD'=∠DD'C,然后根据平行线的性质得出∠D'CE=∠DD'C,从而求得∠D'CE=∠DCD',得出∠D'CE=30°,根据30°角的直角三角形的性质求得D'C=2D'E=2AB,即可求得PC+PD的最小值.【详解】作D点关于AB的对称点D',连接CD'交AB于P,P即为所求,此时PC+PD=PC+PD'=CD',根据两点之间线段最短可知此时PC+PD最小.作D'E⊥BC于E,则EB=D'A=AD.∵CD=2AD,∴DD'=CD,∴∠DCD'=∠DD'C.∵∠DAB=∠ABC=90°,∴四边形ABED'是矩形,∴DD'∥EC,D'E=AB=3,∴∠D'CE=∠DD'C,∴∠D'CE=∠DCD'.∵∠DCB=10°,∴∠D'CE=30°,∴D'C=2D'E=2AB=2×3=1,∴PC+PD的最小值为1.故选:B.【点睛】本题考查了轴对称﹣最短路线问题,轴对称的性质,矩形的判定和性质,等腰三角形的性质,平行线的性质,30°角的直角三角形的性质等,确定出P点是解答本题的关键.5、D【解析】从小到大数据排列为20、30、40、1、1、1、60、70、80,1出现了3次,为出现次数最多的数,故众数为1;共9个数据,第5个数为1,故中位数是1;平均数=(20+30+40+1+1+1+60+70+80)÷9=1.∴平均数=中位数=众数.故选D.6、A【分析】先由,得出动点在与平行且与的距离是的直线上,作关于直线的对称点,连接,则的长就是所求的最短距离.然后在直角三角形中,由勾股定理求得的值,即可得到的最小值.【详解】设中边上的高是.,,,动点在与平行且与的距离是的直线上,如图,作关于直线的对称点,连接,则的长就是所求的最短距离,在中,,,即的最小值为.故选:A.【点睛】本题考查了轴对称﹣最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.7、C【解析】找出括号中式子的有理化因式即可得.【详解】解:(4+)×(4-)=42-()2=16-3=13,是整数,所以a的值可能为4-,故选C【点睛】本题考查了有理化因式,正确选择两个二次根式,使它们的积符合平方差公式的结构特征是解题的关键.8、D【解析】根据不等式的性质、对顶角的性质、三角形和补角的性质进行判断即可.【详解】解:A、如果a>b,a>c,不能判断b,c的大小,原命题是假命题;B、相等的角不一定是对顶角,原命题是假命题;C、一个角的补角不一定大于这个角,原命题是假命题;D、个三角形中至少有两个锐角,原命题是真命题;故选:D.【点睛】考核知识点:不等式的性质、对顶角的性质、三角形和补角的性质.9、C【分析】首先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.【详解】解:∵∠BEF是△AEF的外角,∠1=25°,∠F=30°,
∴∠BEF=∠1+∠F=55°,
∵AB∥CD,
∴∠2=∠BEF=55°,
故选:C.【点睛】本题主要考查了平行线的性质,解题的关键是掌握三角形外角的性质,此题难度不大.10、B【解析】根据轴对称的定义,逐一判断选项,即可得到答案.【详解】A是轴对称图形,不符合题意,B不是轴对称图形,符合题意,C是轴对称图形,不符合题意,D是轴对称图形,不符合题意,故选B.【点睛】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.11、A【分析】作DE⊥AB于E,由角平分线的性质可得点D到AB的距离DE=CD,根据已知求得CD即可.【详解】解:作DE⊥AB于E.∵∠C=90°,AD平分∠BAC,∴DE=CD,∵BC=10,BD=6,∴CD=BC-BD=10-6=1,∴点D到AB的距离DE=1.故选:A.【点睛】本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解答本题的关键.12、B【解析】根据分式的定义,分式有意义的条件以及最简公分母进行解答.【详解】A、形如AB且BB、整式和分式统称有理式,故本选项正确.C、当x≠3时,分式xx-3D、分式2a2b与1ab的最简公分母是故选:B.【点睛】考查了最简公分母,分式的定义以及分式有意义的条件.因为1不能做除数,所以分式的分母不能为1.二、填空题(每题4分,共24分)13、2.25或3【分析】已知∠B=∠C,根据全等三角形的性质得出BD=PC,或BP=PC,进而算出时间t,再算出y即可.【详解】解:设经过t秒后,△BPD与△CQP全等,∵AB=AC=12厘米,点D为AB的中点,∴BD=6厘米,∵∠B=∠C,BP=yt,CQ=3t,
∴要使△BPD和△CQP全等,则当△BPD≌△CQP时,BD=CP=6厘米,∴BP=3,
∴t=3÷3=1(秒),
y=3÷1=3(厘米/秒),
当△BPD≌△CPQ,∴BP=PC,BD=QC=6,∴t=6÷3=2(秒),
∵BC=9cm,
∴PB=4.5cm,
y=4.5÷2=2.25(厘米/秒).故答案为:2.25或3.【点睛】本题考查了等腰三角形的性质和全等三角形的性质,注意:全等三角形的对应边相等.14、【分析】连接BD,根据勾股定理求出BD,再根据勾股定理逆定理证明,在计算面积即可;【详解】连接BD,∵∠A=90°,AB=2,AD=,∴,又∵CD=3,BC=5,∴,∴,∴.故答案是:.【点睛】本题主要考查了勾股定理和勾股定理逆定理,准确分析计算是解题的关键.15、260°.【分析】利用三角形的外角等于不相邻的两个内角之和以及等量代换进行解题即可【详解】解:如图:∠1=∠B+∠C,∠DME=∠A+∠E,∠ANF=∠F+∠D,∵∠1=∠DME+∠ANF=130°,∴∠A+∠B+∠C+∠D+∠E+∠F=2×130°=260°.故答案为260°.【点睛】本题主要考查三角形的外角性质,关键在于能够把所有的外角关系都找到16、【分析】根据轴对称判断出点A关于x轴对称后的位置,此时横坐标不变,纵坐标互为相反数,然后再向左平移1个单位长度便可得到第一次变换后的点A的坐标;按照同样的方式可以找到第二次变换后的点A的坐标;然后再通过比较横纵坐标的数值,可以发现点A在每一次变换后的规律,即可求出经过2019次变换后的点A的坐标.【详解】点A原来的位置(0,1)第一次变换:,此时A坐标为;第二次变换:,此时A坐标为第三次变换:,此时A坐标为……第n次变换:点A坐标为所以第2019次变换后的点A的坐标为.故答案为:;;【点睛】本题考查的知识点是轴对称及平移的相关知识,平面直角坐标系中四个象限的点的横、纵坐标的符号是解题中的易错点,必须特别注意.17、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定.【详解】解:,故答案为:.【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的1的个数所决定.18、;【分析】根据方位角的定义以及点的位置,即可求出的度数.【详解】解:∵点B在点A的南偏西方向,点C在点A的南偏东方向,∴;故答案为:75°.【点睛】本题考查了解直角三角形的应用——方向角问题,会识别方向角是解题的关键.三、解答题(共78分)19、,证明见解析【分析】根据题意证明△ABE≌△ACD即可求解.【详解】,证明如下:∵,∴AB-BD=AC-CE,即AD=AE,又∴△ABE≌△ACD(SAS)∴.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理.20、(1)见解析;(2),见解析【分析】(1)由AD与BC平行,利用两直线平行内错角相等,得到一对角相等,再由一对对顶角相等及E为AB中点得到一对边相等,利用AAS即可得出△ADE≌△BFE;(2)∠GDF=∠ADE,以及(1)得出的∠ADE=∠BFE,等量代换得到∠GDF=∠BFE,利用等角对等边得到GF=GD,即三角形GDF为等腰三角形,再由(1)得到DE=FE,即GE为底边上的中线,利用三线合一即可得到GE与DF垂直.【详解】(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△ADE和△BFE中,,∴△ADE≌△BFE(AAS);(2)EG⊥DF,理由如下:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,∴DG=FG,由(1)得:△ADE≌△BFE∴DE=FE,即GE为DF上的中线,又∵DG=FG,∴EG⊥DF.【点睛】此题考查了全等三角形的判定与性质,平行线的性质,以及等腰三角形的判定与性质,熟练掌握判定与性质是解本题的关键.21、【分析】根据平方根、立方根的定义列出方程组,即可求解.【详解】解:由题意可知①+②可得,【点睛】此题主要考查实数的性质,解题的关键是熟知平方根、立方根的定义.22、(1)见解析;(2);(3)见解析.【分析】(1)根据图形的对称性,分别作三点关于轴对称的点,连接三点即得所求图形;(2)根据图形和条件可以得出是等腰直角三角形,由勾股定理求出直角边长,通过面积公式计算即得;(3)根据等腰三角形三线合一,找到点关于直线的对称点,连接即得.【详解】(1)作图如下:由点的对称性,作出对称的顶点,连接的所求作图形;(2)由题意可知,为等腰直角三角形,由勾股定理可得,,故答案为:;(3)作图如下,作线段EF交AC于点D,则点D为AC中点,由等腰三角形性质,三线合一可知,连接即为的平分线.【点睛】考查了对称的性质,等腰直角三角形的面积求法,勾股定理得应用以及等腰三角形的三线合一的性质,熟记几何图形性质是做题的关键.23、一台清雪机每小时晴雪1500立方米.【分析】解设出环卫工人每小时清雪立方米,则一台清雪机每小时清雪立方米,根据等量关系式:一台清雪机清理6000立方米的积雪所用时间=120名环卫工人清理积雪所用时间-小时,列出方程即可求解.【详解】解:设一名环卫工人每小时清雪立方米,则一台清雪机每小时清雪立方米根据题意得:解得:检验:是原方程得解当时,.答:一台清雪机每小时晴雪1500立方米.【点睛】本题考查的是分式方程的应用,根据题目意思设出未知数,找出等量关系式是解此题的关键.24、证明见解析.【分析】如图,在线段上截取,连结,由角平分线的性质可得∠ABD=∠EBD=∠ABC,利用SAS可证明△ABD≌△EBD,即可得,,根据等腰三角形的性质可求出∠ACB=∠ABC=36°,根据三角形内角和定理及外角性质可得,即可证明CD=CE,进而可得结论.【详解】如图,在线段上截取,连结,∵平分,∴在和中,∴,∴,.∵,∴,∴,∴∴,∴∴,∴,∴.【点睛】本题考查角平分线的定义、全等三角形的判
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国际合作租赁合同范本
- 仓配战略合作协议内容
- 2024年种鸽买卖合同正规范本
- 标准建筑设备租赁合同文本
- 房屋出租代理合同样本
- 定向培养就业协议书范本
- 个人之间版权许可协议书
- 医疗旅游合作合同
- 《大青树下的小学》第一课时公开课一等奖创新教案
- 统编版语文四年级上册第七单元 习作写信+语文园地 公开课一等奖创新教学设计(共3课时)
- 11.9消防宣传日关注消防安全主题班会课件
- 期中达标检测卷(试题)-2024-2025学年北师大版二年级数学上册
- 广东开放大学2024年秋《国家安全概论(S)(本专)》形成性考核作业参考答案
- 第一、二单元语文园地巩固练习-2024-2025学年语文六年级上册统编版
- 探索低空应用场景实施方案
- 个人求职简历教学课件
- 探究与发现对勾函数图象和性质 教学设计-2023-2024学年高一上学期数学人教A版(2019)必修第一册
- 2024-2030年中国城市更新行业市场深度分析及前景趋势与投资战略研究报告
- 2023光伏并网柜技术规范
- 2024至2030年互联网+鸡蛋市场前景研究报告
- 欠钱不还诉状书范文2024年
评论
0/150
提交评论