2025届江苏省泰州市名校八年级数学第一学期期末监测试题含解析_第1页
2025届江苏省泰州市名校八年级数学第一学期期末监测试题含解析_第2页
2025届江苏省泰州市名校八年级数学第一学期期末监测试题含解析_第3页
2025届江苏省泰州市名校八年级数学第一学期期末监测试题含解析_第4页
2025届江苏省泰州市名校八年级数学第一学期期末监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省泰州市名校八年级数学第一学期期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,点C、B分别在两条直线y=﹣3x和y=kx上,点A、D是x轴上两点,若四边形ABCD是正方形,则k的值为()A.3 B.2 C. D.2.勿忘草是多年生草本植物,它拥有世界上最小的花粉勿忘草的花粉直径为1.111114米,数据1.111114用科学记数法表示为()A.4115B.4116C.411-5D.411-63.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(小时)之间的函数关系用图像可以表示为中的()A. B. C. D.4.下列四组数据,能作为直角三角形的三边长的是()A.2、4、6 B.2、3、4 C.5、7、12 D.8、15、175.已知中,,求证:,运用反证法证明这个结论,第一步应先假设()成立A. B. C. D.6.运用乘法公式计算,下列结果正确的是()A. B. C. D.7.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A.3,-1 B.1,-3 C.-3,1 D.-1,38.如图1,从边长为的正方形剪掉一个边长为的正方形;如图2,然后将剩余部分拼成一个长方形.上述操作能验证的等式是()A..B..C..D..9.如图,在△ABC中,AD为BC边上的中线,DE为△ABD中AB边上的中线,△ABC的面积为6,则△ADE的面积是()A.1 B. C.2 D.10.方程组的解中x与y的值相等,则k等于()A.-1 B.-2 C.-3 D.-4二、填空题(每小题3分,共24分)11.如图,四边形中,,垂足为,则的度数为____.12.小刚准备测量一段河水的深度,他把一根竹竿插到离岸边远的水底,竹竿高出水面,当他把竹竿的顶端拉向岸边时,竹竿和岸边的水面刚好相齐,则河水的深度为_______.13.命题“等腰三角形两底角相等”的逆命题是_______14.已知函数y=-x+m与y=mx-4的图象交点在y轴的负半轴上,那么,m的值为____.15.、、的公分母是___________.16.如图,在四边形ABDC中,E、F、G、H分别为AB、BC、CD、DA的中点,并且E、F、G、H四点不共线.当AC=6,BD=8时,四边形EFGH的周长是_____.17.在实数范围内,使得有意义的的取值范围为______.18.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④AE=EC,其中正确的是________(填序号)三、解答题(共66分)19.(10分)解方程:+=420.(6分)先化简,再求值:已知,求的值.21.(6分)为了解某区八年级学生的睡眠情况,随机抽取了该区八年级学生部分学生进行调查.已知D组的学生有15人,利用抽样所得的数据绘制所示的统计图表.组别睡眠时间根据图表提供的信息,回答下列问题:(1)试求“八年级学生睡眠情况统计图”中的a的值及a对应的扇形的圆心角度数;(2)如果睡眠时间x(时)满足:,称睡眠时间合格.已知该区八年级学生有3250人,试估计该区八年级学生睡眠时间合格的共有多少人?(3)如果将各组别学生睡眠情况分组的最小值(如C组别中,取),B、C、D三组学生的平均睡眠时间作为八年级学生的睡眠时间的依据.试求该区八年级学生的平均睡眠时间.22.(8分)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF(1)求证:△ABE≌△CBF;(2)若∠CAE=25°,求∠ACF的度数.23.(8分)解方程:.24.(8分)分式化简求值与解方程(1)分式化简求值÷,其中(2)解分式方程:25.(10分)解方程:(1)4x2﹣8=0;(2)(x﹣2)3=﹣1.26.(10分)如图,B地在A地的正东方向,两地相距28km.A,B两地之间有一条东北走向的高速公路,且A,B两地到这条高速公路的距离相等.上午8:00测得一辆在高速公路上行驶的汽车位于A地的正南方向P处,至上午8:20,B地发现该车在它的西北方向Q处,该段高速公路限速为110km/h.问:该车是否超速行驶?

参考答案一、选择题(每小题3分,共30分)1、D【分析】设点C的横坐标为m,则点C的坐标为(m,﹣3m),点B的坐标为(﹣,﹣3m),根据正方形的性质,即可得出关于k的分式方程,解之经检验后即可得出结论.【详解】解:设点C的横坐标为m,∵点C在直线y=-3x上,∴点C的坐标为(m,﹣3m),∵四边形ABCD为正方形,∴BC∥x轴,BC=AB,又点B在直线y=kx上,且点B的纵坐标与点C的纵坐标相等,∴点B的坐标为(﹣,﹣3m),∴﹣﹣m=﹣3m,解得:k=,经检验,k=是原方程的解,且符合题意.故选:D.【点睛】本题考查正方形的性质,正比例函数的图象与性质以及解分式方程等知识点,灵活运用性质是解题的关键.2、D【解析】根据科学记数法的性质以及应用进行表示即可.【详解】故答案为:D.【点睛】本题考查了科学记数法的应用,掌握科学记数法的性质以及应用是解题的关键.3、B【分析】根据蜡烛剩余的长度=总长度-燃烧的长度就可以得出函数的解析式,由题意求出自变量的取值范围就可以得出函数图象.【详解】解:由题意,得

y=30-5t,

∵y≥0,t≥0,

∴30-5t≥0,

∴t≤6,

∴0≤t≤6,

∴y=30-5t是降函数且图象是一条线段.

故选B.【点睛】本题考查一次函数的解析式的运用,一次函数的与实际问题的关系的运用,一次函数的图象的运用,自变量的取值范围的运用,解答时求出函数解析式及自变量的范围是关键.4、D【详解】解:A、22+42≠62,根据勾股定理的逆定理可知三角形不是直角三角形,故错误;B、22+32≠42,根据勾股定理的逆定理可知三角形不是直角三角形,故错误.C、52+72≠122,根据勾股定理的逆定理可知三角形不是直角三角形,故错误;D、82+152=172,根据勾股定理的逆定理可知三角形是直角三角形,故正确.故选D.考点:勾股数.5、A【分析】根据反证法的步骤,第一步要从结论的反面出发假设结论,即可判断.【详解】解:的反面为故选A.【点睛】此题考查的是反证法的步骤,掌握反证法的第一步为假设结论不成立,并找到结论的反面是解决此题的关键.6、B【分析】利用添括号法则将y-3看成一个整体,然后利用平方差公式和完全平方公式计算即可.【详解】解:====故选B.【点睛】此题考查的是平方差公式和完全平方公式的应用,掌握平方差公式和完全平方公式是解决此题的关键.7、A【分析】根据题意可得方程组,再解方程组即可.【详解】由题意得:,解得:,故选A.8、B【分析】观察图1与图2,根据两图形阴影部分面积相等,验证平方差公式即可;【详解】根据阴影部分面积相等可得:上述操作能验证的等式是B,故答案为:B.【点睛】此题主要考查平方差公式的验证,解题的关键是根据图形找到等量关系.9、B【分析】根据三角形的中线的性质,得△ADE的面积是△ABD的面积的一半,△ABD的面积是△ABC的面积的一半,由此即可解决问题.【详解】∵AD是△ABC的中线,∴S△ABD=S△ABC=1.∵DE为△ABD中AB边上的中线,∴S△ADE=S△ABD=.故选:B.【点睛】此题考查三角形的面积,三角形的中线的性质,解题的关键是掌握三角形的中线把三角形的面积分成了相等的两部分.10、B【解析】分析:首先根据方程组的解法求出x和y的值,然后根据x=y得出k的值.详解:解方程组可得:,∵x与y的值相等,∴,解得:k=-2,故选B.点睛:本题主要考查的就是二元一次方程组的解法,属于基础题型.解二元一次方程组就是利用消元的思想来进行,可以加减消元,也可以代入消元.本题中在解方程组的时候一定要讲k看作是已知数,然后进行求解得出答案.二、填空题(每小题3分,共24分)11、45°【解析】由题意利用四边形内角和为360°以及邻补角的定义进行分析即可得出的度数.【详解】解:∵四边形中,,,∴,∴.故答案为:45°.【点睛】本题考查四边形内角和定理,利用四边形内角和为360°以及邻补角的定义进行求解是解题的关键.12、米【分析】河水的深、竹竿的长、离岸的距离三者构成直角三角形,作出图形,根据勾股定理即可求解.【详解】如图,在Rt△ABC中,AC=1.5cm.CD=AB-BC=3.5m.

设河深BC=xm,则AB=3.5+x米.

根据勾股定理得出:

∵AC3+BC3=AB3

∴1.53+x3=(x+3.5)3

解得:x=3.

【点睛】本题考查了勾股定理在实际生活中的应用,根据勾股定理可以把求线段的长的问题转化为解方程得问题是解题的关键.13、有两个角相等的三角形是等腰三角形【分析】根据逆命题的条件和结论分别是原命题的结论和条件写出即可.【详解】∵原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,∴命题“等腰三角形的两个底角相等”的逆命题是“有两个角相等三角形是等腰三角形”.故答案为:有两个角相等的三角形是等腰三角形.【点睛】本题考查命题与逆命题,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.14、-1【分析】根据题意,第二个函数图象与y轴的交点坐标也是第一个函数图象与y轴的交点坐标,然后求出第二个函数图象与y轴的交点坐标,代入第一个函数解析式计算即可求解.【详解】当x=0时,y=m•0-1=-1,

∴两函数图象与y轴的交点坐标为(0,-1),

把点(0,-1)代入第一个函数解析式得,m=-1.

故答案为:-1.【点睛】此题考查两直线相交的问题,根据第二个函数解析式求出交点坐标是解题的关键,也是本题的突破口.15、12x3y-12x2y2【解析】根据确定最简公分母的方法进行解答即可.【详解】系数的最小公倍数是12;x的最高次数是2;y与(x-y)的最高次数是1;所以最简公分母是12x2y(x-y).

故答案为12x2y(x-y).【点睛】此题考查了最简公分母的取法,确定最简公分母的方法有三步,分别为:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,三步得到的因式的积即为最简公分母.16、14【分析】根据三角形中位线定理得到FG∥EH,FG=EH,根据平行四边形的判定定理和周长解答即可.【详解】∵F,G分别为BC,CD的中点,∴FG=BD=4,FG∥BD,∵E,H分别为AB,DA的中点,∴EH=BD=4,EH∥BD,∴FG∥EH,FG=EH,∴四边形EFGH为平行四边形,∴EF=GH=AC=3,∴四边形EFGH的周长=3+3+4+4=14,故答案为14【点睛】本题考查的是三角形中位线定理,掌握三角形中位线定理和平行四边形的判定定理是解题的关键.17、【分析】直接利用二次根式有意义的条件分析得出答案.【详解】解:在实数范围内,使得有意义,

则1+x≥0,

解得:x≥-1.

故答案为:x≥-1.【点睛】本题考查二次根式有意义的条件,正确把握二次根式的定义是解题关键.18、①②④【分析】易证△ABD≌△EBC,可得可得①②正确,再根据角平分线的性质可求得,即,根据可求得④正确.【详解】①BD为△ABC的角平分线,

在△ABD和△EBC中,

△ABD≌△EBC,

①正确;

②BD为△ABC的角平分线,,BD=BC,BE=BA,

△ABD≌△EBC

②正确;③

为等腰三角形,

,

△ABD≌△EBC,

BD为△ABC的角平分线,,而EC不垂直与BC,

③错误;④正确.故答案为:①②④.【点睛】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.三、解答题(共66分)19、【分析】先去分母,方程的两边同乘(x﹣1),再展开计算,化简求解出未知数,最后验算结果即可.【详解】方程的两边同乘(x﹣1),得:x-2=4(x﹣1),即:解得:,检验:当时,x﹣1≠0,∴原分式方程的解为.【点睛】本题主要考车了解方程的相关计算,注意不能把“解”子漏掉,最后得到的结果代入检验原式的分母是否为0,如果为零,则把该结果舍去.20、,【分析】原式括号中的两项分母分解因式后利用异分母分式加减法法则,先通分再运算,然后利用分式除法运算法则运算,约分化简,最后把的值代入求值即可.【详解】原式=====,当时,原式===【点睛】本题考查了分式的混合运算,重点是通分和约分的应用,掌握因式分解的方法,分式加减和乘除法法则为解题关键.21、(1),对应扇形的圆心角度数为18;(2)该区八年级学生睡眠时间合格的共有人;(3)该区八年级学生的平均睡眠时间为小时.【分析】(1)根据各部分的和等于1即可求得,然后根据圆心角的度数=360×百分比求解即可;(2)合格的总人数=八年级的总人数×八年级合格人数所占百分比;(3)分别计算B、C、D三组抽取的学生数,然后根据平均数的计算公式即可求得抽取的B、C、D三组学生的平均睡眠时间,即可估计该区八年级学生的平均睡眠时间.【详解】(1)根据题意得:;

对应扇形的圆心角度数为:360×5%=18;(2)根据题意得:(人),则该区八年级学生睡眠时间合格的共有人;(3)∵抽取的D组的学生有15人,∴抽取的学生数为:(人),∴B组的学生数为:(人),C组的学生数为:(人),∴B、C、D三组学生的平均睡眠时间:(小时),该区八年级学生的平均睡眠时间为小时.【点睛】本题主要考查的是扇形统计图的认识以及用样本估计总体,弄清题中的数据是解本题的关键.22、(1)详见解析;(2)65°.【分析】(1)运用HL定理直接证明△ABE≌△CBF,即可解决问题.(2)证明∠BAE=∠BCF=25°;求出∠ACB=45°,即可解决问题.【详解】证明:(1)在Rt△ABE与Rt△CBF中,,∴△ABE≌△CBF(HL).(2)∵△ABE≌△CBF,∴∠BAE=∠BCF=20°;∵AB=BC,∠ABC=90°,∴∠ACB=45°,∴∠ACF=65°.【点睛】该题主要考查了全等三角形的判定及其性质的应用问题;准确找出图形中隐含的相等或全等关系是解题的关键.23、.【解析】解分式方程去分母转化成一元一次方程,分式方程一定要检验24、(1),;(2)【分析】(1)先化简分式得到,再将变形为代

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论