版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南邵阳县八年级数学第一学期期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.以下列各组线段的长为边,能组成三角形的是()A.2、4、7 B.3、5、2 C.7、7、3 D.9、5、32.今天早晨上7点整,小华以50米/分的速度步行去上学,妈妈同时骑自行车向相反的方向去上班,10分钟时按到小华的电话,立即原速返回并前往学校,恰与小华同时到达学校他们离家的距离y(米)与时间x(分)间的函数关系如图所示,有如下的结论:①妈妈骑骑自行车的速度为250米/分;②小华家到学校的距离是1250米;③小华今早晨上学从家到学校的时间为25分钟:④在7点16分40秒时妈妈与小华在学校相遇.其中正确的结论有()A.1个 B.2个 C.3个 D.4个3.如图,已知:,点、、…在射线上,点、、…在射线上,、、…均为等边三角形,若,则的边长为()A.6 B.12 C.16 D.324.若,则点(x,y)在第()象限.A.四 B.三 C.二 D.一5.下列哪一组数是勾股数()A.9,12,13 B.8,15,17 C.,3, D.12,18,226.某学校计划挖一条长为米的供热管道,开工后每天比原计划多挖米,结果提前天完成.若设原计划每天挖米,那么下面所列方程正确的是()A. B.C. D.7.已知(m-n)2=38,(m+n)2=4000,则m2+n2的值为()A.2017 B.2018 C.2019 D.40388.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为()A.8 B.10 C.12 D.149.化简式子的结果为()A. B. C. D.10.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是(
).A.45° B.60° C.75° D.85°11.已知样本数据1,2,4,3,5,下列说法不正确的是()A.平均数是3 B.中位数是4C.极差是4 D.方差是212.我市某中学九年级(1)班为开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学捐款情况如下表:捐款(元)51015202530人数361111136问该班同学捐款金额的众数和中位数分别是()A.13,11 B.25,30 C.20,25 D.25,20二、填空题(每题4分,共24分)13.对于实数a,b,定义运算:a▲b=如:2▲3=,4▲2=.按照此定义的运算方式计算[(-)▲2019]×[2020▲4]=________.14.化简:的结果是_____.15.将一副三角板如图叠放,则图中∠AOB的度数为_____.16.计算:=____.17.在中,°,,,某线段,,两点分别在和的垂线上移动,则当__________.时,才能使和全等.18.若式子4x2-mx+9是完全平方式,则m的值为__________________.三、解答题(共78分)19.(8分)如图是由边长为的小正方形构成的网格,每个小正方形的顶点叫做格点,的顶点在格点.请选择适当的格点用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图,作关于直线的对称图形;(2)如图,作的高;(3)如图,作的中线;(4)如图,在直线上作出一条长度为个单位长度的线段在的上方,使的值最小.20.(8分)(模型建立)(1)如图1,等腰直角三角形中,,,直线经过点,过作于点,过作于点.求证:;(模型应用)(2)已知直线:与坐标轴交于点、,将直线绕点逆时针旋转至直线,如图2,求直线的函数表达式;(3)如图3,长方形,为坐标原点,点的坐标为,点、分别在坐标轴上,点是线段上的动点,点是直线上的动点且在第四象限.若是以点为直角顶点的等腰直角三角形,请直接写出点的坐标.21.(8分)为厉行节能减排,倡导绿色出行,我市推行“共享单车”公益活动.某公司在小区分别投放A、B两种不同款型的共享单车,其中A型车的投放量是B型车的投放量的倍,B型车的成本单价比A型车高20元,A型、B型单车投放总成本分别为30000元和26400元,求A型共享单车的成本单价是多少元?22.(10分)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.23.(10分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.24.(10分)如图1所示,直线与轴负半轴,轴正半轴分别交于、两点.
(1)当时,求点坐标及直线的解析式.(2)在(1)的条件下,如图2所示,设为延长线上一点,作直线,过、两点分别作于,于,若,求的长.(3)当取不同的值时,点在轴正半轴上运动,分别以、为边,点为直角顶点在第一、二象限内作等腰直角和等腰直角,连接交轴于点,如图3.问:当点在轴正半轴上运动时,试猜想的长是否为定值?若是,请求出其值;若不是,说明理由.25.(12分)倡导健康生活推进全民健身,某社区去年购进A,B两种健身器材若干件,经了解,B种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件.(1)A,B两种健身器材的单价分别是多少元?(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共50件,且费用不超过21000元,请问:A种健身器材至少要购买多少件?26.如图,点在上,和都是等边三角形.猜想:三条线段之间的关系,并说明理由.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:根据三角形任意两边的和大于第三边,可知
A、2+4<7,不能够组成三角形,故A错误;
B、2+3=5,不能组成三角形,故B错误;
C、7+3>7,能组成三角形,故C正确;
D、3+5<9,不能组成三角形,故D错误;
故选:C.【点睛】本题考查了能够组成三角形三边的条件,熟练掌握构成三角形的条件是解题的关键.2、C【分析】①由函数图象可以求出妈妈骑车的速度是210米/分;
②设妈妈到家后追上小华的时间为x分钟,就可以求出小华家到学校的距离;
③由②结论就可以求出小华到校的时间;
④由③的结论就可以求出相遇的时间.【详解】解:①由题意,得
妈妈骑车的速度为:2100÷10=210米/分;
②设妈妈到家后追上小华的时间为x分钟,由题意,得
210x=10(20+x),
解得:x=1.
∴小华家到学校的距离是:210×1=1210米.
③小华今天早晨上学从家到学校的时间为1210÷10=21分钟,
④由③可知在7点21分时妈妈与小华在学校相遇.
∴正确的有:①②③共3个.
故选:C.【点睛】本题考查了追击问题的数量关系的运用,路程÷速度=时间的关系的运用,解答时认真分析函数图象的意义是关键.3、C【分析】先根据等边三角形的各边相等且各角为60°得:∠B1A1A2=60°,A1B1=A1A2,再利用外角定理求∠OB1A1=30°,则∠MON=∠OB1A1,由等角对等边得:B1A1=OA1=,得出△A1B1A2的边长为,再依次同理得出:△A2B2A3的边长为1,△A3B3A4的边长为2,△A4B4A5的边长为:22=4,△A5B5A6的边长为:23=8,则△A6B6A7的边长为:24=1.【详解】解:∵△A1B1A2为等边三角形,
∴∠B1A1A2=60°,A1B1=A1A2,
∵∠MON=30°,
∴∠OB1A1=60°-30°=30°,
∴∠MON=∠OB1A1,
∴B1A1=OA1=,
∴△A1B1A2的边长为,
同理得:∠OB2A2=30°,
∴OA2=A2B2=OA1+A1A2=+=1,
∴△A2B2A3的边长为1,
同理可得:△A3B3A4的边长为2,△A4B4A5的边长为:22=4,△A5B5A6的边长为:23=8,则△A6B6A7的边长为:24=1.故选:C.【点睛】本题考查等边三角形的性质和外角定理,运用类比的思想,依次求出各等边三角形的边长,解题关键是总结规律,得出结论.4、D【分析】利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可确定出点所在的象限.【详解】解:∵,∴,
解得:,
则点(1,1)在第一象限,
故选:D.【点睛】本题考查解二元一次方程组,以及非负数的性质,点的坐标,熟练掌握方程组的解法是解题的关键.5、B【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A、∵92+122≠132,∴此选项不符合题意;B、∵152+82=172,∴此选项符合题意;C、∵和不是正整数,此选项不符合题意;D、∵122+182≠222,∴此选项不符合题意;故选:B.【点睛】此题考查的是勾股数的判断,掌握勾股数的定义是解决此题的关键.6、A【分析】若计划每天挖x米,则实际每天挖x+5米,利用时间=路程÷速度,算出计划的时间与实际时间作差即可列出方程.【详解】原计划每天挖x米,则实际每天挖x+5米,那么原计划所有时间:;实际所有时间:.提前10天完成,即.故选A.【点睛】本题考查分式方程的应用,关键在于理解题意找出等量关系.7、C【分析】根据完全平方公式的变形,即可解答.【详解】(m−n)2=38,m2−2mn+n2=38①,(m+n)2=4000,m2+2mn+n2=4000②,①+②得:2m2+2n2=4038,m2+n2=1.故选:C.【点睛】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.8、B【解析】试题分析:根据平行四边形的性质可知AB=CD,AD∥BC,AD=BC,然后根据平行线的性质和角平分线的性质可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故选B.点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解.9、D【分析】根据二次根式有意义的条件即可求出a的取值范围,然后根据二次根式的除法公式和分母有理化化简即可.【详解】解:,即,故选:D.【点睛】此题考查的是二次根式的化简,掌握二次根式有意义的条件、二次根式的除法公式和分母有理化是解题关键.10、C【解析】分析:先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.详解:如图,∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选C.点睛:本题主要考查三角形的外角的性质,解题的关键是掌握三角形的内角和定理和三角形外角的性质.11、B【解析】试题分析:A、这组数据的平均数是:(1+2+4+3+5)÷5=3,故本选项正确;B、把这组数据从小到大排列:1,2,3,4,5,则中位数是3,故本选项错误;C、这组数据的极差是:5-1=4,故本选项正确;D、这组数据的方差是2,故本选项正确;故选B.考点:方差;算术平均数;中位数;极差.12、D【分析】根据众数和中位数的定义即可得到结果.【详解】解:∵25是这组数据中出现次数最多的数据,∴25是这组数据的众数;∵已知数据是由小到大的顺序排列,第25个和第26个数都是1,∴这组数据的中位数为1.故选D.【点睛】本题考查的是众数和中位数,熟练掌握基本概念是解题的关键.二、填空题(每题4分,共24分)13、-1【分析】根据题中的新定义进行计算即可.【详解】根据题意可得,原式=,故答案为:-1.【点睛】本题考查了整数指数幂,掌握运算法则是解题关键.14、【解析】原式=,故答案为.15、【分析】根据三角形的外角的性质计算即可.【详解】由三角形的外角的性质可知,∠AOB=∠CAO-∠B=60°-45°=15°,
故答案为:15°.【点睛】本题考查了三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.16、1【解析】根据算术平方根的定义进行化简,再根据算术平方根的定义求解即可.【详解】解:∵12=21,
∴=1,
故答案为:1.【点睛】本题考查了算术平方根的定义,先把化简是解题的关键.17、5㎝或10㎝【分析】本题要分情况讨论:①Rt△ABC≌Rt△QPA,此时AP=BC=5cm,可据此求出P点的位置;②Rt△ABC≌Rt△PQA,此时AP=AC,P、C重合.【详解】解:∵PQ=AB,∴根据三角形全等的判定方法HL可知,当P运动到AP=BC时,在Rt△ABC和Rt△QPA中,∴Rt△ABC≌Rt△QPA(HL),即AP=BC=5cm;当P运动到与C点重合时,在Rt△ABC和Rt△QPA中,∴Rt△ABC≌Rt△PQA(HL),即AP=AC=10cm.故答案为5㎝或10㎝.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.18、±12【分析】由完全平方公式进行计算即可得解.【详解】由可知,则,故答案为:±12.【点睛】本题主要考查了完全平方式的应用,熟练掌握完全平方式的相关公式是解决本题的关键.三、解答题(共78分)19、(1)图见解析;(2)图见解析;(3)图见解析;(4)图见解析【分析】(1)分别找到A、B、C关于直线l的对称点,连接、、即可;(2)如解图2,连接CH,交AB于点D,利用SAS证出△ACB≌△CGH,从而得出∠BAC=∠HCG,然后利用等量代换即可求出∠CDB=90°;(3)如解图3,连接CP交AB于点E,利用矩形的性质可得AE=BE;(4)如解图4,找出点A关于l的对称点A1,设点A1正下方的格点为C,连接CB,交直线l于点N,设点B正上方的格点为D,连接A1D,交直线l于点M,连接AM,根据平行四边形的性质和两点之间线段最短即可推出此时MN即为所求.【详解】解:(1)分别找到A、B、C关于直线l的对称点,连接、、,如图1所示,即为所求;(2)如图2所示连接CH,交AB于点D,在△ACB和△CGH中∴△ACB≌△CGH∴∠BAC=∠HCG∵∠BAC+∠ABC=90°∴∠HCG+∠ABC=90°∴∠CDB=90°∴CD为△ABC的高,故CD即为所求;(3)如图3所示,连接CP交AB于点E由图可知:四边形ACBP为矩形∴AE=EB∴CE为△ABC的中线,故CE即为所求;(4)如图4所示,找出点A关于l的对称点A1,设点A1正下方的格点为C,连接CB,交直线l于点N,设点B正上方的格点为D,连接A1D,交直线l于点M,连接AM根据对称性可知:AM=A1M由图可知:A1C=BD=1个单位长度,A1C∥BD∥直线l∴四边形A1CBD为平行四边形∴A1D∥BC∴四边形A1CNM和四边形MNBD均为平行四边形∴A1M=CN,MN=BD=1个单位长度∴AM=CN∴AM+NB=CN+NB=CB,根据两点之间线段最短,此时AM+NB最小,而MN=1个单位长度为固定值,∴此时最小,故此时MN即为所求.【点睛】此题考查的是在网格中画对称图形、画三角形的高、中线和线段之和的最值问题,掌握对称图形的画法、全等三角形的判定及性质、矩形的性质和平行四边形的判定及性质是解决此题的关键.20、(1)见解析;(2)y=−7x−21;(3)D(4,−2)或(,).【分析】(1)根据△ABC为等腰直角三角形,AD⊥ED,BE⊥ED,可判定;(2)①过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,根据△CBD≌△BAO,得出BD=AO=3,CD=OB=4,求得C(−4,7),最后运用待定系数法求直线l2的函数表达式;(3)根据△APD是以点D为直角顶点的等腰直角三角形,当点D是直线y=−2x+6上的动点且在第四象限时,分两种情况:当点D在矩形AOCB的内部时,当点D在矩形AOCB的外部时,设D(x,−2x+6),分别根据△ADE≌△DPF,得出AE=DF,据此列出方程进行求解即可.【详解】解:(1)证明:∵△ABC为等腰直角三角形,∴CB=CA,∠ACD+∠BCE=90°,又∵AD⊥ED,BE⊥ED,∴∠D=∠E=90°,∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△ACD与△CBE中,,∴(AAS);(2)①如图2,过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,∵∠BAC=45°,∴△ABC为等腰直角三角形,由(1)可知:△CBD≌△BAO,∴BD=AO,CD=OB,∵直线l1:y=x+4中,若y=0,则x=−3;若x=0,则y=4,∴A(−3,0),B(0,4),∴BD=AO=3,CD=OB=4,∴OD=4+3=7,∴C(−4,7),设l2的解析式为y=kx+b,则,解得:,∴l2的解析式为:y=−7x−21;(3)D(4,−2)或(,).理由:当点D是直线y=−2x+6上的动点且在第四象限时,分两种情况:当点D在矩形AOCB的内部时,如图,过D作x轴的平行线EF,交直线OA于E,交BC于F,设D(x,−2x+6),则OE=2x−6,AE=6−(2x−6)=12−2x,DF=EF−DE=8−x,由(1)可得,△ADE≌△DPF,则DF=AE,即:12−2x=8−x,解得x=4,∴−2x+6=−2,∴D(4,−2),此时,PF=ED=4,CP=6=CB,符合题意;当点D在矩形AOCB的外部时,如图,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,−2x+6),则OE=2x−6,AE=OE−OA=2x−6−6=2x−12,DF=EF−DE=8−x,同理可得:△ADE≌△DPF,则AE=DF,即:2x−12=8−x,解得x=,∴−2x+6=,∴D(,),此时,ED=PF=,AE=BF=,BP=PF−BF=<6,符合题意,综上所述,D点坐标为:(4,−2)或(,)【点睛】本题属于一次函数综合题,主要考查了点的坐标、矩形的性质、待定系数法、等腰直角三角形的性质以及全等三角形等相关知识的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行计算,解题时注意分类思想的运用.21、A型共享单车的成本单价是200元【分析】设A型共享单车的成本单价是x元,则B型共享单车的成本单价是(x+20)元,然后根据题意列出分式方程,即可求出结论.【详解】解:设A型共享单车的成本单价是x元,则B型共享单车的成本单价是(x+20)元根据题意可得解得:经检验:是原方程的解.答:A型共享单车的成本单价是200元.【点睛】此题考查的是分式方程的应用,掌握实际问题中的等量关系是解决此题的关键.22、(1)证明见解析;(2)15,26,37,48,59;(3).【解析】试题分析:(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,由“吉祥数”的定义确定出x与y的关系式,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.试题解析:(1)对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)的最大值为.考点:因式分解的应用;新定义;因式分解;阅读型.23、证明见解析.【分析】(1)一方面Rt△ABC中,由∠BAC=30°可以得到AB=2BC,另一方面△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,从而可证明△AFE≌△BCA,再根据全等三角形的性质即可证明AC=EF.(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.【详解】证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC.又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF.∴AF=BC.∵在Rt△AFE和Rt△BCA中,AF=BC,AE=BA,∴△AFE≌△BCA(HL).∴AC=EF.(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD.∴∠DAB=∠DAC+∠BAC=90°.∴EF∥AD.∵AC=EF,AC=AD,∴EF=AD.∴四边形ADFE是平行四边形.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的判定.24、(1);(2);(3)的长为定值【分析】(1)先求出A、B两点坐标,求出OA与OB,由OA=OB,求出m即可;(2)用勾股定理求AB,再证,BN=O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年个人股权委托管理转让合同范本3篇
- 2025年度个人合伙退伙合同范本精要3篇
- 现代社会生活中的常见隐患及其家庭预防策略研究报告
- 智慧医疗与健康科技的发展
- 二零二五年度车间承包与安全生产责任合同4篇
- 游戏化学习小学生注意力培养的新模式
- 网络安全技术与隐私保护措施研究
- 2025年度虚拟现实体验店租赁合同
- 网络环境下家庭信息的安全存储与分享策略
- 玉林2025年广西玉林市第一人民医院招聘24人笔试历年参考题库附带答案详解
- 基于视觉的工业缺陷检测技术
- 案例分析:美国纽约高楼防火设计课件
- 老客户维护方案
- 高处作业安全教育培训讲义课件
- 移动商务内容运营(吴洪贵)任务一 用户定位与选题
- 万科物业管理公司全套制度(2016版)
- 2021年高考化学真题和模拟题分类汇编专题20工业流程题含解析
- 工作证明模板下载免费
- (完整word)长沙胡博士工作室公益发布新加坡SM2考试物理全真模拟试卷(附答案解析)
- 机械点检员职业技能知识考试题库与答案(900题)
- 成熙高级英语听力脚本
评论
0/150
提交评论