




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
OrganizingandVisualizingVariablesChapter2ObjectivesInthischapteryoulearn:
Methodstoorganizevariables.Methodstovisualizevariables.Methodstoorganizeorvisualizemorethanonevariableatthesametime.Principlesofpropervisualizations.CategoricalDataAreOrganizedByUtilizingTablesDCOVACategoricalDataTallyingData
SummaryTable
OneCategoricalVariable
TwoCategoricalVariablesContingencyTableOrganizingCategoricalData:SummaryTableAsummarytabletalliesthefrequenciesorpercentagesofitemsinasetofcategoriessothatyoucanseedifferencesbetweencategories.
ReasonForShoppingOnline?PercentBetterPrices37%Avoidingholidaycrowdsorhassles29%Convenience18%Betterselection13%Shipsdirectly3%DCOVAMainReasonYoungAdultsShopOnlineSource:Dataextractedandadaptedfrom“MainReasonYoungAdultsShopOnline?”USAToday,December5,2012,p.1A.AContingencyTableHelpsOrganizeTwoorMoreCategoricalVariablesUsedtostudypatternsthatmayexistbetweentheresponsesoftwoormorecategoricalvariablesCrosstabulatesortalliesjointlytheresponsesofthecategoricalvariablesFortwovariablesthetalliesforonevariablearelocatedintherowsandthetalliesforthesecondvariablearelocatedinthecolumnsDCOVAContingencyTable-ExampleArandomsampleof400invoicesisdrawn.Eachinvoiceiscategorizedasasmall,medium,orlargeamount.Eachinvoiceisalsoexaminedtoidentifyifthereareanyerrors.Thisdataarethenorganizedinthecontingencytabletotheright.DCOVANoErrorsErrorsTotalSmallAmount17020190MediumAmount10040140LargeAmount65570Total33565400ContingencyTableShowingFrequencyofInvoicesCategorizedBySizeandThePresenceOfErrorsContingencyTableBasedOnPercentageOfOverallTotalNoErrorsErrorsTotalSmallAmount17020190MediumAmount10040140LargeAmount65570Total33565400DCOVANoErrorsErrorsTotalSmallAmount42.50%5.00%47.50%MediumAmount25.00%10.00%35.00%LargeAmount16.25%1.25%17.50%Total83.75%16.25%100.0%42.50%=170/40025.00%=100/40016.25%=65/40083.75%ofsampledinvoiceshavenoerrorsand47.50%ofsampledinvoicesareforsmallamounts.ContingencyTableBasedOnPercentageofRowTotalsNoErrorsErrorsTotalSmallAmount17020190MediumAmount10040140LargeAmount65570Total33565400DCOVANoErrorsErrorsTotalSmallAmount89.47%10.53%100.0%MediumAmount71.43%28.57%100.0%LargeAmount92.86%7.14%100.0%Total83.75%16.25%100.0%89.47%=170/19071.43%=100/14092.86%=65/70Mediuminvoiceshavealargerchance(28.57%)ofhavingerrorsthansmall(10.53%)orlarge(7.14%)invoices.ContingencyTableBasedOnPercentageOfColumnTotalsNoErrorsErrorsTotalSmallAmount17020190MediumAmount10040140LargeAmount65570Total33565400DCOVANoErrorsErrorsTotalSmallAmount50.75%30.77%47.50%MediumAmount29.85%61.54%35.00%LargeAmount19.40%7.69%17.50%Total100.0%100.0%100.0%50.75%=170/33530.77%=20/65Thereisa61.54%chancethatinvoiceswitherrorsareofmediumsize.TablesUsedForOrganizing
NumericalDataDCOVANumericalDataOrderedArrayCumulativeDistributionsFrequencyDistributionsOrganizingNumericalData:
OrderedArrayAnorderedarrayisasequenceofdata,inrankorder,fromthesmallestvaluetothelargestvalue.Showsrange(minimumvaluetomaximumvalue)Mayhelpidentifyoutliers(unusualobservations)AgeofSurveyedCollegeStudentsDayStudents161717181818191920202122222527323842NightStudents181819192021232832334145DCOVAOrganizingNumericalData:
FrequencyDistributionThefrequencydistributionisasummarytableinwhichthedataarearrangedintonumericallyorderedclasses.
Youmustgiveattentiontoselectingtheappropriatenumberofclassgroupingsforthetable,determiningasuitablewidthofaclassgrouping,andestablishingtheboundariesofeachclassgroupingtoavoidoverlapping.Thenumberofclassesdependsonthenumberofvaluesinthedata.Withalargernumberofvalues,typicallytherearemoreclasses.Ingeneral,afrequencydistributionshouldhaveatleast5butnomorethan15classes.Todeterminethewidthofaclassinterval,youdividetherange(Highestvalue–Lowestvalue)ofthedatabythenumberofclassgroupingsdesired.DCOVAOrganizingNumericalData:
FrequencyDistributionExampleExample:Amanufacturerofinsulationrandomlyselects20winterdaysandrecordsthedailyhightemperature24,35,17,21,24,37,26,46,58,30,32,13,12,38,41,43,44,27,53,27DCOVAOrganizingNumericalData:
FrequencyDistributionExampleSortrawdatainascendingorder:
12,13,17,21,24,24,26,27,27,30,32,35,37,38,41,43,44,46,53,58Findrange:58-12=46Selectnumberofclasses:5(usuallybetween5and15)Computeclassinterval(width):10(46/5thenroundup)Determineclassboundaries(limits):Class1:10butlessthan20Class2:20butlessthan30Class3:30butlessthan40Class4:40butlessthan50Class5:50butlessthan60Computeclassmidpoints:15,25,35,45,55Countobservations&assigntoclassesDCOVAOrganizingNumericalData:FrequencyDistributionExample
ClassMidpoints Frequency10butlessthan2015 320butlessthan3025 630butlessthan4035 540butlessthan5045 450butlessthan6055 2
Total
20Datainorderedarray:12,13,17,21,24,24,26,27,27,30,32,35,37,38,41,43,44,46,53,58DCOVAOrganizingNumericalData:Relative&PercentFrequencyDistributionExample
ClassFrequency10butlessthan203.1515%20butlessthan306.3030%30butlessthan405.2525%40butlessthan504.2020%50butlessthan602.1010%
Total
201.00100%RelativeFrequency
PercentageDCOVARelativeFrequency=Frequency/Total,e.g.0.10=2/20OrganizingNumericalData:CumulativeFrequencyDistributionExampleClass10butlessthan20 315%315%20butlessthan30 630%945%30butlessthan40 525%1470%40butlessthan50 420%1890%50butlessthan60 210%20100%Total 20100 20 100%
PercentageCumulativePercentageCumulativePercentage=CumulativeFrequency/Total*100e.g.45%=100*9/20FrequencyCumulativeFrequencyDCOVAWhyUseaFrequencyDistribution?ItcondensestherawdataintoamoreusefulformItallowsforaquickvisualinterpretationofthedataItenablesthedeterminationofthemajorcharacteristicsofthedatasetincludingwherethedataareconcentrated/clusteredDCOVAFrequencyDistributions:
SomeTipsDifferentclassboundariesmayprovidedifferentpicturesforthesamedata(especiallyforsmallerdatasets)ShiftsindataconcentrationmayshowupwhendifferentclassboundariesarechosenAsthesizeofthedatasetincreases,theimpactofalterationsintheselectionofclassboundariesisgreatlyreducedWhencomparingtwoormoregroupswithdifferentsamplesizes,youmustuseeitherarelativefrequencyorapercentagedistributionDCOVAVisualizingCategoricalDataThroughGraphicalDisplaysDCOVACategoricalDataVisualizingDataBarChartSummaryTableForOneVariableContingencyTableForTwoVariablesSideBySideBarChartPieChartParetoChartVisualizingCategoricalData:
TheBarChartThebarchartvisualizesacategoricalvariableasaseriesofbars.Thelengthofeachbarrepresentseitherthefrequencyorpercentageofvaluesforeachcategory.Eachbarisseparatedbyaspacecalledagap.
DCOVAReasonForShoppingOnline?PercentBetterPrices37%Avoidingholidaycrowdsorhassles29%Convenience18%Betterselection13%Shipsdirectly3%VisualizingCategoricalData:
ThePieChartThepiechartisacirclebrokenupintoslicesthatrepresentcategories.Thesizeofeachsliceofthepievariesaccordingtothepercentageineachcategory.
DCOVAReasonForShoppingOnline?PercentBetterPrices37%Avoidingholidaycrowdsorhassles29%Convenience18%Betterselection13%Shipsdirectly3%VisualizingCategoricalData:
TheParetoChartUsedtoportraycategoricaldataAverticalbarchart,wherecategoriesareshownindescendingorderoffrequencyAcumulativepolygonisshowninthesamegraphUsedtoseparatethe“vitalfew”fromthe“trivialmany”DCOVAVisualizingCategoricalData:
TheParetoChart(con’t)DCOVA CumulativeCause Frequency Percent PercentWarpedcardjammed 36550.41% 50.41%Cardunreadable 23432.32% 82.73%ATMmalfunctions 32 4.42% 87.15%ATMoutofcash 28 3.87% 91.02%Invalidamountrequested 23 3.18% 94.20%Wrongkeystroke 23 3.18% 97.38%Lackoffundsinaccount 19 2.62% 100.00%Total 724 100.00%Source:DataextractedfromA.Bhalla,“Don’tMisusetheParetoPrinciple,”SixSigmaForumMagazine,May2009,pp.15–18.OrderedSummaryTableForCausesOfIncompleteATMTransactionsVisualizingCategoricalData:
TheParetoChart(con’t)DCOVAThe“VitalFew”VisualizingCategoricalData:
SideBySideBarChartsThesidebysidebarchartrepresentsthedatafromacontingencytable.
DCOVAInvoiceswitherrorsaremuchmorelikelytobeofmediumsize(61.54%vs30.77%and7.69%)NoErrorsErrorsTotalSmallAmount50.75%30.77%47.50%MediumAmount29.85%61.54%35.00%LargeAmount19.40%7.69%17.50%Total100.0%100.0%100.0%VisualizingNumericalDataByUsingGraphicalDisplaysNumericalDataOrderedArrayStem-and-LeafDisplayHistogramPolygonOgiveFrequencyDistributionsandCumulativeDistributionsDCOVAStem-and-LeafDisplayAsimplewaytoseehowthedataaredistributedandwhereconcentrationsofdataexistMETHOD:Separatethesorteddataseries
intoleadingdigits(thestems)and
thetrailingdigits(the
leaves)DCOVAOrganizingNumericalData:
StemandLeafDisplayAstem-and-leafdisplayorganizesdataintogroups(calledstems)sothatthevalueswithineachgroup(theleaves)branchouttotherightoneachrow.
StemLeaf1677888992001225732842AgeofCollegeStudents DayStudents NightStudentsStemLeaf1889920138323415AgeofSurveyedCollegeStudentsDayStudents161717181818191920202122222527323842NightStudents181819192021232832334145DCOVAVisualizingNumericalData:
TheHistogramAverticalbarchartofthedatainafrequencydistributioniscalledahistogram.Inahistogramtherearenogapsbetweenadjacentbars.Theclassboundaries(orclassmidpoints)areshownonthehorizontalaxis.Theverticalaxisiseitherfrequency,relativefrequency,orpercentage.Theheightofthebarsrepresentthefrequency,relativefrequency,orpercentage.DCOVAVisualizingNumericalData:
TheHistogram
ClassFrequency10butlessthan203.151520butlessthan306.303030butlessthan405.252540butlessthan504.202050butlessthan602.1010
Total
201.00100RelativeFrequency
Percentage(Inapercentagehistogramtheverticalaxiswouldbedefinedtoshowthepercentageofobservationsperclass)DCOVAVisualizingNumericalData:
ThePolygonApercentagepolygonisformedbyhavingthemidpointofeachclassrepresentthedatainthatclassandthenconnectingthesequenceofmidpointsattheirrespectiveclasspercentages.Thecumulativepercentagepolygon,orogive,displaysthevariableofinterestalongtheXaxis,andthecumulativepercentagesalongtheYaxis.Usefulwhentherearetwoormoregroupstocompare.DCOVAVisualizingNumericalData:
ThePercentagePolygonDCOVAUsefulWhenComparingTwoorMoreGroupsVisualizingNumericalData:
ThePercentagePolygonDCOVAVisualizingTwoNumericalVariablesByUsingGraphicalDisplaysTwoNumericalVariablesScatterPlotTime-SeriesPlotDCOVAVisualizingTwoNumericalVariables:TheScatterPlotScatterplotsareusedfornumericaldataconsistingofpairedobservationstakenfromtwonumericalvariablesOnevariableismeasuredontheverticalaxisandtheothervariableismeasuredonthehorizontalaxisScatterplotsareusedtoexaminepossiblerelationshipsbetweentwonumericalvariablesDCOVAScatterPlotExampleVolumeperdayCostperday231252614029146331603816742170501885519560200DCOVAATime-SeriesPlotisusedtostudypatternsinthevaluesofanumericvariableovertimeTheTime-SeriesPlot:NumericvariableismeasuredontheverticalaxisandthetimeperiodismeasuredonthehorizontalaxisVisualizingTwoNumericalVariables:TheTimeSeriesPlotDCOVATimeSeriesPlotExampleYearNumberofFranchises1996431997541998601999732000822001952002107200399200495DCOVAAmultidimensionalcontingencytableisconstructedbytallyingtheresponsesofthreeormorecategoricalvariables.InExcelcreatingaPivotTabletoyieldaninteractivedisplayofthistype.WhileMinitabwillnotcreateaninteractivetable,ithasmanyspecializedstatistical&graphicalprocedures(notcoveredinthisbook)toanalyze&visualizemultidimensionaldata.OrganizingManyCategoricalVariables:TheMultidimensionalContingencyTableDCOVAUsingExcelPivotTablesToOrganize&VisualizeManyVariablesApivottable:SummarizesvariablesasamultidimensionalsummarytableAllowsinteractivechangingofthelevelofsummarizationandformattingofthevariablesAllowsyoutointeractively“slice”yourdatatosummarizesubsetsofdatathatmeetspecifiedcriteriaCanbeusedtodiscoverpossiblepatternsandrelationshipsinmultidimensionaldatathatsimplertablesandchartswouldfailtomakeapparent.DCOVAAMultidimensionalContingencyTableTalliesResponsesOfThreeorMoreCategoricalVariablesTwoDimensionalTableShowingTheMean10YearReturn%BrokenOutByTypeOfFund&RiskLevelDCOVAThreeDimensionalTableShowingTheMean10YearReturn%BrokenOutByTypeOfFund,MarketCap,&RiskLevelDataDiscoveryMethodsCanYieldInitialInsightsIntoDataDatadiscoveryaremethodsenabletheperformanceofpreliminaryanalysesbymanipulatinginteractivesummarizationsAreusedto:TakeacloserlookathistoricalorstatusdataReviewdataforunusualvaluesUncovernewpatternsindataDrill-downisperhapsthesimplestformofdatadiscoveryDCOVADrill-DownRevealsTheDataUnderlyingAHigher-LevelSummaryDCOVAResultsofdrillingdowntothedetailsaboutsmallmarketcapvaluefundswithlowrisk.SomeDataDiscoveryMethodsArePrimarilyVisualAtreemapissuchamethodAtreemapvisualizesthecomparisonoftwoormorevariablesusingthesizeandcolorofrectanglestorepresentvaluesWhenusedwithoneormorecategoricalvariablesitformsamultilevelhierarchyortreethatcanuncoverpatternsamongnumericalvariables.DCOVAAnExampleOfATreemapDCOVAAtreemapofthenumericalvariablesassets(size)and10-yearreturnpercentage(color)forgrowthandvaluefundsthathavesmallmarketcapitalizationsandlowriskTheChallengesinOrganizingandVisualizingVariablesWhenorganizingandvisualizingdataneedtobemindfulof:ThelimitsofothersabilitytoperceiveandcomprehendPresentationissuesthatcanundercuttheusefulnessofmethodsfromthischapter.ItiseasytocreatesummariesthatObscurethedataorCreatefalseimpressionsDCOVAAnExampleOfObscuringData,InformationOverloadDCOVAFalseImpressionsCanBeCreatedInManyWaysSelectivesummarizationPresentingonlypartofthedatacollectedImproperlyconstructedchartsPotentialpiechartissuesImproperlyscaledaxesAYaxisthatdoesnotbeginattheoriginorisabrokenaxismissingintermediatevaluesChartjunkDCOVAAnExampleofSelectiveSummarization,TheseTwoSummarizationsTellTotallyDifferentStoriesDCOVACompanyChangefromPriorYearCompanyYear1Year2Year3A+7.2%A-22.6%-33.2%+7.2%B+24.4%B-4.5%-41.9%+24.4%C+24.9%C-18.5%-31.5%+24.9%D+24.8%D-29.4%-48.1%+24.8%E+12.5%E-1.9%-25.3%+12.5%F+35.1%F-1.6%-37.8%+35.1%G+29.7%G+7.4%-13.6%+29.7%HowObviousIsItThatBothPieChartsSummarizeTheSameData?DCOVAWhyis
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 爬模施工方案
- 桩基正循环施工方案
- 工业厂房吊装施工方案
- 楼道污水改道施工方案
- 岩礁施工方案模板
- 外墙圆弧石材施工方案
- 二零二五年度创业投资公司股权退出协议
- 二零二五年房产借名购买房产权属变更协议
- 二零二五年度房地产项目建筑劳务派遣合同
- 二零二五年度旅游酒店经营权整体转让合同样本
- 2024年沙洲职业工学院高职单招语文历年参考题库含答案解析
- 2024年广东省《辅警招聘考试必刷500题》考试题库【学生专用】
- 水文工程施工方案
- 学校食堂餐厅管理者食堂安全考试题附答案
- 2025广西中烟工业限责任公司招聘126人高频重点提升(共500题)附带答案详解
- 一体化指挥调度平台建设方案
- 《没有纽扣的红衬衫》课件
- 2024年学校综治安全工作计划(3篇)
- 车站信号自动控制(第二版) 课件 1-基础.理论
- 中建给排水及供暖施工方案
- 《前沿材料科学》课件
评论
0/150
提交评论