




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
OrganizingandVisualizingVariablesChapter2ObjectivesInthischapteryoulearn:
Methodstoorganizevariables.Methodstovisualizevariables.Methodstoorganizeorvisualizemorethanonevariableatthesametime.Principlesofpropervisualizations.CategoricalDataAreOrganizedByUtilizingTablesDCOVACategoricalDataTallyingData
SummaryTable
OneCategoricalVariable
TwoCategoricalVariablesContingencyTableOrganizingCategoricalData:SummaryTableAsummarytabletalliesthefrequenciesorpercentagesofitemsinasetofcategoriessothatyoucanseedifferencesbetweencategories.
ReasonForShoppingOnline?PercentBetterPrices37%Avoidingholidaycrowdsorhassles29%Convenience18%Betterselection13%Shipsdirectly3%DCOVAMainReasonYoungAdultsShopOnlineSource:Dataextractedandadaptedfrom“MainReasonYoungAdultsShopOnline?”USAToday,December5,2012,p.1A.AContingencyTableHelpsOrganizeTwoorMoreCategoricalVariablesUsedtostudypatternsthatmayexistbetweentheresponsesoftwoormorecategoricalvariablesCrosstabulatesortalliesjointlytheresponsesofthecategoricalvariablesFortwovariablesthetalliesforonevariablearelocatedintherowsandthetalliesforthesecondvariablearelocatedinthecolumnsDCOVAContingencyTable-ExampleArandomsampleof400invoicesisdrawn.Eachinvoiceiscategorizedasasmall,medium,orlargeamount.Eachinvoiceisalsoexaminedtoidentifyifthereareanyerrors.Thisdataarethenorganizedinthecontingencytabletotheright.DCOVANoErrorsErrorsTotalSmallAmount17020190MediumAmount10040140LargeAmount65570Total33565400ContingencyTableShowingFrequencyofInvoicesCategorizedBySizeandThePresenceOfErrorsContingencyTableBasedOnPercentageOfOverallTotalNoErrorsErrorsTotalSmallAmount17020190MediumAmount10040140LargeAmount65570Total33565400DCOVANoErrorsErrorsTotalSmallAmount42.50%5.00%47.50%MediumAmount25.00%10.00%35.00%LargeAmount16.25%1.25%17.50%Total83.75%16.25%100.0%42.50%=170/40025.00%=100/40016.25%=65/40083.75%ofsampledinvoiceshavenoerrorsand47.50%ofsampledinvoicesareforsmallamounts.ContingencyTableBasedOnPercentageofRowTotalsNoErrorsErrorsTotalSmallAmount17020190MediumAmount10040140LargeAmount65570Total33565400DCOVANoErrorsErrorsTotalSmallAmount89.47%10.53%100.0%MediumAmount71.43%28.57%100.0%LargeAmount92.86%7.14%100.0%Total83.75%16.25%100.0%89.47%=170/19071.43%=100/14092.86%=65/70Mediuminvoiceshavealargerchance(28.57%)ofhavingerrorsthansmall(10.53%)orlarge(7.14%)invoices.ContingencyTableBasedOnPercentageOfColumnTotalsNoErrorsErrorsTotalSmallAmount17020190MediumAmount10040140LargeAmount65570Total33565400DCOVANoErrorsErrorsTotalSmallAmount50.75%30.77%47.50%MediumAmount29.85%61.54%35.00%LargeAmount19.40%7.69%17.50%Total100.0%100.0%100.0%50.75%=170/33530.77%=20/65Thereisa61.54%chancethatinvoiceswitherrorsareofmediumsize.TablesUsedForOrganizing
NumericalDataDCOVANumericalDataOrderedArrayCumulativeDistributionsFrequencyDistributionsOrganizingNumericalData:
OrderedArrayAnorderedarrayisasequenceofdata,inrankorder,fromthesmallestvaluetothelargestvalue.Showsrange(minimumvaluetomaximumvalue)Mayhelpidentifyoutliers(unusualobservations)AgeofSurveyedCollegeStudentsDayStudents161717181818191920202122222527323842NightStudents181819192021232832334145DCOVAOrganizingNumericalData:
FrequencyDistributionThefrequencydistributionisasummarytableinwhichthedataarearrangedintonumericallyorderedclasses.
Youmustgiveattentiontoselectingtheappropriatenumberofclassgroupingsforthetable,determiningasuitablewidthofaclassgrouping,andestablishingtheboundariesofeachclassgroupingtoavoidoverlapping.Thenumberofclassesdependsonthenumberofvaluesinthedata.Withalargernumberofvalues,typicallytherearemoreclasses.Ingeneral,afrequencydistributionshouldhaveatleast5butnomorethan15classes.Todeterminethewidthofaclassinterval,youdividetherange(Highestvalue–Lowestvalue)ofthedatabythenumberofclassgroupingsdesired.DCOVAOrganizingNumericalData:
FrequencyDistributionExampleExample:Amanufacturerofinsulationrandomlyselects20winterdaysandrecordsthedailyhightemperature24,35,17,21,24,37,26,46,58,30,32,13,12,38,41,43,44,27,53,27DCOVAOrganizingNumericalData:
FrequencyDistributionExampleSortrawdatainascendingorder:
12,13,17,21,24,24,26,27,27,30,32,35,37,38,41,43,44,46,53,58Findrange:58-12=46Selectnumberofclasses:5(usuallybetween5and15)Computeclassinterval(width):10(46/5thenroundup)Determineclassboundaries(limits):Class1:10butlessthan20Class2:20butlessthan30Class3:30butlessthan40Class4:40butlessthan50Class5:50butlessthan60Computeclassmidpoints:15,25,35,45,55Countobservations&assigntoclassesDCOVAOrganizingNumericalData:FrequencyDistributionExample
ClassMidpoints Frequency10butlessthan2015 320butlessthan3025 630butlessthan4035 540butlessthan5045 450butlessthan6055 2
Total
20Datainorderedarray:12,13,17,21,24,24,26,27,27,30,32,35,37,38,41,43,44,46,53,58DCOVAOrganizingNumericalData:Relative&PercentFrequencyDistributionExample
ClassFrequency10butlessthan203.1515%20butlessthan306.3030%30butlessthan405.2525%40butlessthan504.2020%50butlessthan602.1010%
Total
201.00100%RelativeFrequency
PercentageDCOVARelativeFrequency=Frequency/Total,e.g.0.10=2/20OrganizingNumericalData:CumulativeFrequencyDistributionExampleClass10butlessthan20 315%315%20butlessthan30 630%945%30butlessthan40 525%1470%40butlessthan50 420%1890%50butlessthan60 210%20100%Total 20100 20 100%
PercentageCumulativePercentageCumulativePercentage=CumulativeFrequency/Total*100e.g.45%=100*9/20FrequencyCumulativeFrequencyDCOVAWhyUseaFrequencyDistribution?ItcondensestherawdataintoamoreusefulformItallowsforaquickvisualinterpretationofthedataItenablesthedeterminationofthemajorcharacteristicsofthedatasetincludingwherethedataareconcentrated/clusteredDCOVAFrequencyDistributions:
SomeTipsDifferentclassboundariesmayprovidedifferentpicturesforthesamedata(especiallyforsmallerdatasets)ShiftsindataconcentrationmayshowupwhendifferentclassboundariesarechosenAsthesizeofthedatasetincreases,theimpactofalterationsintheselectionofclassboundariesisgreatlyreducedWhencomparingtwoormoregroupswithdifferentsamplesizes,youmustuseeitherarelativefrequencyorapercentagedistributionDCOVAVisualizingCategoricalDataThroughGraphicalDisplaysDCOVACategoricalDataVisualizingDataBarChartSummaryTableForOneVariableContingencyTableForTwoVariablesSideBySideBarChartPieChartParetoChartVisualizingCategoricalData:
TheBarChartThebarchartvisualizesacategoricalvariableasaseriesofbars.Thelengthofeachbarrepresentseitherthefrequencyorpercentageofvaluesforeachcategory.Eachbarisseparatedbyaspacecalledagap.
DCOVAReasonForShoppingOnline?PercentBetterPrices37%Avoidingholidaycrowdsorhassles29%Convenience18%Betterselection13%Shipsdirectly3%VisualizingCategoricalData:
ThePieChartThepiechartisacirclebrokenupintoslicesthatrepresentcategories.Thesizeofeachsliceofthepievariesaccordingtothepercentageineachcategory.
DCOVAReasonForShoppingOnline?PercentBetterPrices37%Avoidingholidaycrowdsorhassles29%Convenience18%Betterselection13%Shipsdirectly3%VisualizingCategoricalData:
TheParetoChartUsedtoportraycategoricaldataAverticalbarchart,wherecategoriesareshownindescendingorderoffrequencyAcumulativepolygonisshowninthesamegraphUsedtoseparatethe“vitalfew”fromthe“trivialmany”DCOVAVisualizingCategoricalData:
TheParetoChart(con’t)DCOVA CumulativeCause Frequency Percent PercentWarpedcardjammed 36550.41% 50.41%Cardunreadable 23432.32% 82.73%ATMmalfunctions 32 4.42% 87.15%ATMoutofcash 28 3.87% 91.02%Invalidamountrequested 23 3.18% 94.20%Wrongkeystroke 23 3.18% 97.38%Lackoffundsinaccount 19 2.62% 100.00%Total 724 100.00%Source:DataextractedfromA.Bhalla,“Don’tMisusetheParetoPrinciple,”SixSigmaForumMagazine,May2009,pp.15–18.OrderedSummaryTableForCausesOfIncompleteATMTransactionsVisualizingCategoricalData:
TheParetoChart(con’t)DCOVAThe“VitalFew”VisualizingCategoricalData:
SideBySideBarChartsThesidebysidebarchartrepresentsthedatafromacontingencytable.
DCOVAInvoiceswitherrorsaremuchmorelikelytobeofmediumsize(61.54%vs30.77%and7.69%)NoErrorsErrorsTotalSmallAmount50.75%30.77%47.50%MediumAmount29.85%61.54%35.00%LargeAmount19.40%7.69%17.50%Total100.0%100.0%100.0%VisualizingNumericalDataByUsingGraphicalDisplaysNumericalDataOrderedArrayStem-and-LeafDisplayHistogramPolygonOgiveFrequencyDistributionsandCumulativeDistributionsDCOVAStem-and-LeafDisplayAsimplewaytoseehowthedataaredistributedandwhereconcentrationsofdataexistMETHOD:Separatethesorteddataseries
intoleadingdigits(thestems)and
thetrailingdigits(the
leaves)DCOVAOrganizingNumericalData:
StemandLeafDisplayAstem-and-leafdisplayorganizesdataintogroups(calledstems)sothatthevalueswithineachgroup(theleaves)branchouttotherightoneachrow.
StemLeaf1677888992001225732842AgeofCollegeStudents DayStudents NightStudentsStemLeaf1889920138323415AgeofSurveyedCollegeStudentsDayStudents161717181818191920202122222527323842NightStudents181819192021232832334145DCOVAVisualizingNumericalData:
TheHistogramAverticalbarchartofthedatainafrequencydistributioniscalledahistogram.Inahistogramtherearenogapsbetweenadjacentbars.Theclassboundaries(orclassmidpoints)areshownonthehorizontalaxis.Theverticalaxisiseitherfrequency,relativefrequency,orpercentage.Theheightofthebarsrepresentthefrequency,relativefrequency,orpercentage.DCOVAVisualizingNumericalData:
TheHistogram
ClassFrequency10butlessthan203.151520butlessthan306.303030butlessthan405.252540butlessthan504.202050butlessthan602.1010
Total
201.00100RelativeFrequency
Percentage(Inapercentagehistogramtheverticalaxiswouldbedefinedtoshowthepercentageofobservationsperclass)DCOVAVisualizingNumericalData:
ThePolygonApercentagepolygonisformedbyhavingthemidpointofeachclassrepresentthedatainthatclassandthenconnectingthesequenceofmidpointsattheirrespectiveclasspercentages.Thecumulativepercentagepolygon,orogive,displaysthevariableofinterestalongtheXaxis,andthecumulativepercentagesalongtheYaxis.Usefulwhentherearetwoormoregroupstocompare.DCOVAVisualizingNumericalData:
ThePercentagePolygonDCOVAUsefulWhenComparingTwoorMoreGroupsVisualizingNumericalData:
ThePercentagePolygonDCOVAVisualizingTwoNumericalVariablesByUsingGraphicalDisplaysTwoNumericalVariablesScatterPlotTime-SeriesPlotDCOVAVisualizingTwoNumericalVariables:TheScatterPlotScatterplotsareusedfornumericaldataconsistingofpairedobservationstakenfromtwonumericalvariablesOnevariableismeasuredontheverticalaxisandtheothervariableismeasuredonthehorizontalaxisScatterplotsareusedtoexaminepossiblerelationshipsbetweentwonumericalvariablesDCOVAScatterPlotExampleVolumeperdayCostperday231252614029146331603816742170501885519560200DCOVAATime-SeriesPlotisusedtostudypatternsinthevaluesofanumericvariableovertimeTheTime-SeriesPlot:NumericvariableismeasuredontheverticalaxisandthetimeperiodismeasuredonthehorizontalaxisVisualizingTwoNumericalVariables:TheTimeSeriesPlotDCOVATimeSeriesPlotExampleYearNumberofFranchises1996431997541998601999732000822001952002107200399200495DCOVAAmultidimensionalcontingencytableisconstructedbytallyingtheresponsesofthreeormorecategoricalvariables.InExcelcreatingaPivotTabletoyieldaninteractivedisplayofthistype.WhileMinitabwillnotcreateaninteractivetable,ithasmanyspecializedstatistical&graphicalprocedures(notcoveredinthisbook)toanalyze&visualizemultidimensionaldata.OrganizingManyCategoricalVariables:TheMultidimensionalContingencyTableDCOVAUsingExcelPivotTablesToOrganize&VisualizeManyVariablesApivottable:SummarizesvariablesasamultidimensionalsummarytableAllowsinteractivechangingofthelevelofsummarizationandformattingofthevariablesAllowsyoutointeractively“slice”yourdatatosummarizesubsetsofdatathatmeetspecifiedcriteriaCanbeusedtodiscoverpossiblepatternsandrelationshipsinmultidimensionaldatathatsimplertablesandchartswouldfailtomakeapparent.DCOVAAMultidimensionalContingencyTableTalliesResponsesOfThreeorMoreCategoricalVariablesTwoDimensionalTableShowingTheMean10YearReturn%BrokenOutByTypeOfFund&RiskLevelDCOVAThreeDimensionalTableShowingTheMean10YearReturn%BrokenOutByTypeOfFund,MarketCap,&RiskLevelDataDiscoveryMethodsCanYieldInitialInsightsIntoDataDatadiscoveryaremethodsenabletheperformanceofpreliminaryanalysesbymanipulatinginteractivesummarizationsAreusedto:TakeacloserlookathistoricalorstatusdataReviewdataforunusualvaluesUncovernewpatternsindataDrill-downisperhapsthesimplestformofdatadiscoveryDCOVADrill-DownRevealsTheDataUnderlyingAHigher-LevelSummaryDCOVAResultsofdrillingdowntothedetailsaboutsmallmarketcapvaluefundswithlowrisk.SomeDataDiscoveryMethodsArePrimarilyVisualAtreemapissuchamethodAtreemapvisualizesthecomparisonoftwoormorevariablesusingthesizeandcolorofrectanglestorepresentvaluesWhenusedwithoneormorecategoricalvariablesitformsamultilevelhierarchyortreethatcanuncoverpatternsamongnumericalvariables.DCOVAAnExampleOfATreemapDCOVAAtreemapofthenumericalvariablesassets(size)and10-yearreturnpercentage(color)forgrowthandvaluefundsthathavesmallmarketcapitalizationsandlowriskTheChallengesinOrganizingandVisualizingVariablesWhenorganizingandvisualizingdataneedtobemindfulof:ThelimitsofothersabilitytoperceiveandcomprehendPresentationissuesthatcanundercuttheusefulnessofmethodsfromthischapter.ItiseasytocreatesummariesthatObscurethedataorCreatefalseimpressionsDCOVAAnExampleOfObscuringData,InformationOverloadDCOVAFalseImpressionsCanBeCreatedInManyWaysSelectivesummarizationPresentingonlypartofthedatacollectedImproperlyconstructedchartsPotentialpiechartissuesImproperlyscaledaxesAYaxisthatdoesnotbeginattheoriginorisabrokenaxismissingintermediatevaluesChartjunkDCOVAAnExampleofSelectiveSummarization,TheseTwoSummarizationsTellTotallyDifferentStoriesDCOVACompanyChangefromPriorYearCompanyYear1Year2Year3A+7.2%A-22.6%-33.2%+7.2%B+24.4%B-4.5%-41.9%+24.4%C+24.9%C-18.5%-31.5%+24.9%D+24.8%D-29.4%-48.1%+24.8%E+12.5%E-1.9%-25.3%+12.5%F+35.1%F-1.6%-37.8%+35.1%G+29.7%G+7.4%-13.6%+29.7%HowObviousIsItThatBothPieChartsSummarizeTheSameData?DCOVAWhyis
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年能见度测试仪项目可行性研究报告
- 减压件行业深度研究分析报告(2024-2030版)
- 中国畜禽养殖业污染现状及防治对策
- 智能交通商业计划书模板
- 兼职平台创业计划书
- 奶牛血吸虫病的防控
- 2025年胶粘带生产制造项目可行性研究报告
- 2025年汽车尾气净化项目投资分析及可行性报告
- 家政商业模式教案
- 美团代运营合同协议书
- 检验科实验室生物安全风险评估
- 石材维修合同范本(2025年)
- 【MOOC】全新版大学进阶英语综合教程I-内蒙古大学 中国大学慕课MOOC答案
- 《南方航空公司汇率风险管理策略案例分析》
- 2025年山东省春季高考模拟考试英语试卷(含答案解析)
- 《气瓶使用安全培训》课件
- 2023年贵州茅台酒厂保健酒业销售有限公司招聘笔试真题
- 中国农业发展史
- T∕CACE 0118-2024 改性磷石膏混合料道路稳定基层应用技术规程
- 带音标单词表(知识清单)-2024-2025学年外研版(三起)(2024)英语三年级上册
- 摄影测量课程设计
评论
0/150
提交评论