2024-2025学年广东省深圳市十校联考数学九年级第一学期开学经典模拟试题【含答案】_第1页
2024-2025学年广东省深圳市十校联考数学九年级第一学期开学经典模拟试题【含答案】_第2页
2024-2025学年广东省深圳市十校联考数学九年级第一学期开学经典模拟试题【含答案】_第3页
2024-2025学年广东省深圳市十校联考数学九年级第一学期开学经典模拟试题【含答案】_第4页
2024-2025学年广东省深圳市十校联考数学九年级第一学期开学经典模拟试题【含答案】_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共4页2024-2025学年广东省深圳市十校联考数学九年级第一学期开学经典模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下面四个手机的应用图标中,是中心对称图形的是()A. B. C. D.2、(4分)若关于x的方程的解为正数,则m的取值范围是A.m<6 B.m>6 C.m<6且m≠0 D.m>6且m≠83、(4分)如图,梯形ABCD中,AD∥BC,AD=CD,BC=AC,∠BAD=110°,则∠D=()A.140° B.120° C.110° D.100°4、(4分)如图所示,正方形纸片ABCD中,对角线AC,BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB,AC于点E,G,连接GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4,其中正确的结论个数有()A.2个 B.4个 C.3个 D.5个5、(4分)下列各组数中,不能作为直角三角形的三边长的是()A.1.5,2,3 B.6,8,10 C.5,12,13 D.15,20,256、(4分)下列各组数中,不是勾股数的为()A.3,4,5 B.6,8,10 C.5,12,13 D.5,7,107、(4分)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为()A.54° B.64° C.74° D.26°8、(4分)一个三角形的三边分别是3、4、5,则它的面积是()A.6 B.12 C.7.5 D.10二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)平面直角坐标系中,A、O两点的坐标分别为(2,0),(0,0),点P在正比例函数y=x(x>0)图象上运动,则满足△PAO为等腰三角形的P点的坐标为_____.10、(4分)一组数据,则这组数据的方差是__________.11、(4分)如图,点是平行四边形的对角线交点,,是边上的点,且;是边上的点,且,若分别表示和的面积,则__________.12、(4分)在平面直角坐标系xOy中,直线与x轴的交点为A,与y轴的交点为B,且,则k的值为_____________.13、(4分)如图,在等腰梯形ABCD中,AC⊥BD,AC=6cm,则等腰梯形ABCD的面积为__________cm1.三、解答题(本大题共5个小题,共48分)14、(12分)已知,关于x的一次函数y=(1﹣3k)x+2k﹣1,试回答:(1)k为何值时,图象交x轴于点(,0)?(2)k为何值时,y随x增大而增大?15、(8分)如图,四边形和四边形都是平行四边形.求证:四边形是平行四边形.16、(8分)阅读理解:我们知道因式分解与整式乘法是互逆关系,那么逆用乘法公式,即,是否可以因式分解呢?当然可以,而且也很简单。如;.请你仿照上述方法分解因式:(1)(2)17、(10分)在矩形ABCD中,AB=12,BC=25,P是线段AB上一点(点P不与A,B重合),将△PBC沿直线PC折叠,顶点B的对应点是点G,CG,PG分别交线段AD于E,O.(1)如图1,若OP=OE,求证:AE=PB;(2)如图2,连接BE交PC于点F,若BE⊥CG.①求证:四边形BFGP是菱形;②当AE=9,求的值.18、(10分)阅读下列材料:数学课上,老师出示了这样一个问题:如图,菱形和四边形,,连接,,.求证:;某学习小组的同学经过思考,交流了自己的想法:小明:“通过观察分析,发现与存在某种数量关系”;小强:“通过观察分析,发现图中有等腰三角形”;小伟:“利用等腰三角形的性质就可以推导出”.……老师:“将原题中的条件‘’与结论‘’互换,即若,则,其它条件不变,即可得到一个新命题”.……请回答:(1)在图中找出与线段相关的等腰三角形(找出一个即可),并说明理由;(2)求证:;(3)若,则是否成立?若成立,请证明;若不成立,请说明理由.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,点、分别是平行四边形的两边、的中点.若的周长是30,则的周长是_________.20、(4分)如图,为的中位线,点在上,且为直角,若,,则的长为_____.21、(4分)从甲、乙两班分别任抽30名学生进行英语口语测验,两个班测试成绩的方差是,,则_________班学生的成绩比较整齐.22、(4分)在△ABC中,点D,E分别是AB,AC的中点,且DE=3cm,则BC=_____________cm;23、(4分)已知一个直角三角形的两边长分别为12和5,则第三条边的长度为_______二、解答题(本大题共3个小题,共30分)24、(8分)如图,在四边形ABCD中,AB=AD=4,∠A=60°,BC=4,CD=1.(1)求∠ADC的度数;(2)求四边形ABCD的面积.25、(10分)已知,两地相距km,甲、乙两人沿同一公路从地出发到地,甲骑摩托车,乙骑电动车,图中直线,分别表示甲、乙离开地的路程(km)与时问(h)的函数关系的图象.根据图象解答下列问题.(1)甲比乙晚出发几个小时?乙的速度是多少?(2)乙到达终点地用了多长时间?(3)在乙出发后几小时,两人相遇?26、(12分)如图,已知AD=BC,AC=BD.(1)求证:△ADB≌△BCA;(2)OA与OB相等吗?若相等,请说明理由.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

根据中心对称图形的定义即可求解.【详解】由图可知D为中心对称图形,故选D.此题主要考查中心对称图形的定义,解题的关键是熟知中心对称图形的特点.2、C【解析】

原方程化为整式方程得:2﹣x﹣m=2(x﹣2),解得:x=2﹣,∵原方程的解为正数,∴2﹣>0,解得m<6,又∵x﹣2≠0,∴2﹣≠2,即m≠0.故选C.本题主要考查分式方程与不等式,解此题的关键在于先求出方程的解,再得到m的不等式求解即可,需要注意分式方程的分母不能为0.3、D【解析】

根据平行线的性质求出∠B,根据等腰三角形性质求出∠CAB,推出∠DAC,求出∠DCA,根据三角形的内角和定理求出即可.【详解】解:∵AD∥BC,

∴∠B+∠BAD=180°,

∵∠BAD=110°

∴∠B=70°,

∵AC=BC,

∴∠B=∠BAC=70°,

∴∠DAC=110°-70°=40°,

∵AD=DC,

∴∠DAC=∠DCA=40°,

∴∠D=180°-∠DAC-∠DCA=100°,

故选:D.本题考查了梯形,平行线的性质,等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能熟练地运用性质进行计算是解此题的关键.4、C【解析】

根据四边形ABCD为正方形,以及折叠的性质,可以直接得到∠ADG的角度,以及AE=FE,在△BEF中,EF<BE,可以得到2AE<AB,结合三角函数的定义对②作出判断;在△AGD和△OGD中高相等,底不同,可以直接判断其大小,而四边形AEFG是菱形的判定需证得AE=EF=GF=AG;要计算OG和BE的关系,我们需利用到中间量EF,即四边形AEFG的边长,可以转化出BE和OG的关系;当已知△OGF的面积时,根据菱形的性质,可以求得OG的长,进而求出BE的长度,而AE的长度与GF相同,GF可由勾股定理得出,进而求出AB的长度,正方形ABCD的面积也出来了.【详解】∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°.由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确;∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴>2.故②错误;∵∠AOB=90°,∴AG=FG>OG.∵△AGD与△OGD同高,∴S△AGD>S△OGD.故③错误;∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE.∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF.∵AE=EF,∴AE=GF.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,故④正确;∵四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确;∵四边形AEFG是菱形,∴AB∥GF,AB=GF.∵∠BAO=45°,∠GOF=90°,∴△OGF是等腰直角三角形.∵S△OGF=1,∴OG=1,解得OG=,∴BE=2OG=2,GF=,∴AE=GF=2,∴AB=BE+AE=2+2,∴S四边形ABCD=AB=(2+2)=12+8.故⑥错误.∴其中正确结论的序号是①④⑤,共3个.故选C.此题考查正方形的性质,折叠的性质,菱形的性质,三角函数,解题关键在于掌握各性质定理5、A【解析】

只要验证两小边的平方和是否等于最长边的平方即可判断三角形是不是直角三角形,据此进行判断.【详解】解:A、(1.5)2+22≠32,不能构成直角三角形,故本选项符合题意;B、62+82=100=102,能构成直角三角形,故本选项不符合题意;C、52+122=169=132,能构成直角三角形,故本选项不符合题意;D、152+202=252,能构成直角三角形,故本选项符合题意;故选A.本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形只要验证两小边的平方和等于最长边的平方即可.6、D【解析】

满足的三个正整数,称为勾股数,由此判断即可.【详解】解:、,此选项是勾股数;、,此选项是勾股数;、,此选项是勾股数;、,此选项不是勾股数.故选:.此题主要考查了勾股数,关键是掌握勾股数的定义.7、B【解析】

根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【详解】∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=26°,∴∠BCA=∠DAC=26°,∴∠OBC=90°﹣26°=64°.故选B.本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.8、A【解析】

由于32+42=52,易证此三角形是直角三角形,从而易求此三角形的面积.【详解】∵32+42=52,∴此三角形是直角三角形,∴S△=×3×4=1.故选:A.本题考查了勾股定理的逆定理.解题的关键是先证明此三角形是直角三角形.二、填空题(本大题共5个小题,每小题4分,共20分)9、(1,1)或(,)或(1,1)【解析】

分OP=AP、OP=OA、AO=AP三种情况考虑:①当OP1=AP1时,△AOP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;②当OP1=OA时,过点P1作P1B⊥x轴,则△OBP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;③当AO=AP3时,△OAP3为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P3的坐标.综上即可得出结论【详解】∵点A的坐标为(1,0),∴OA=1.分三种情况考虑,如图所示.①当OP1=AP1时,∵∠AOP1=45°,∴△AOP1为等腰直角三角形.又∵OA=1,∴点P1的坐标为(1,1);②当OP1=OA时,过点P1作P1B⊥x轴,则△OBP1为等腰直角三角形.∵OP1=OA=1,∴OB=BP1=,∴点P1的坐标为(,);③当AO=AP3时,△OAP3为等腰直角三角形.∵OA=1,∴AP3=OA=1,∴点P3的坐标为(1,1).综上所述:点P的坐标为(1,1)或(,)或(1,1).故答案为:(1,1)或(,)或(1,1).本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及等腰直角三角形的性质,分OP=AP、OP=OA、AO=AP三种情况求出点P的坐标是解题的关键.10、1【解析】分析:先求出这5个数的平均数,然后利用方差公式求解即可.详解:平均数为=(1+1+3+4+5)÷5=3,S1=[(1-3)1+(1-3)1+(3-3)1+(4-3)1+(5-3)1]=1.故答案为:1.点睛:本题考查了方差的知识,牢记方差的计算公式是解答本题的关键,难度不大.11、3:1【解析】

根据同高的两个三角形面积之比等于底边之比得,,再由点O是▱ABCD的对角线交点,根据平行四边形的性质可得S△AOB=S△BOC=S▱ABCD,从而得出S1与S1之间的关系.【详解】解:∵,,∴S1=S△AOB,S1=S△BOC.∵点O是▱ABCD的对角线交点,∴S△AOB=S△BOC=S▱ABCD,∴S1:S1=:=3:1,故答案为:3:1.本题考查了三角形的面积,平行四边形的性质,根据同高的两个三角形面积之比等于底边之比得出,是解答本题的关键.12、【解析】

先根据解析式确定点A、B的坐标,再根据三角形的面积公式计算得出答案.【详解】令中y=0得x=-,令x=0得y=2,∴点A(-,0),点B(0,2),∴OA=,OB=2,∵,∴,解得k=,故答案为:.此题考查一次函数图象与坐标轴的交点,一次函数与几何图形面积,正确理解OA、OB的长度是解题的关键.13、2【解析】

根据等腰梯形的性质、梯形面积公式求解即可.【详解】∵四边形ABCD是等腰梯形,∴∴等腰梯形ABCD的面积故答案为:2.本题考查了梯形的面积问题,掌握等腰梯形的性质、梯形面积公式是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)k=﹣1;(2)【解析】

(1)把点(,0)代入y=(1﹣3k)x+2k﹣1,列出关于k的方程,求解即可;(2)根据1﹣3k>0时,y随x增大而增大,解不等式求出k的取值范围即可.【详解】解:(1)∵关于x的一次函数y=(1﹣3k)x+2k﹣1的图象交x轴于点(,0),∴(1﹣3k)+2k﹣1=0,解得k=﹣1;(2)1﹣3k>0时,y随x增大而增大,解得.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质.15、详见解析【解析】

首先根据平行四边形的性质,得出,,,,进而得出,,即可判定.【详解】∵四边形是平行四边形,∴,∵四边形是平行四边形,∴,∴,∴四边形是平行四边形此题主要考查平行四边形的性质和判定,熟练掌握,即可解题.16、①;②【解析】

(1)逆用乘法公式(x+a)

(x+b)=x2+(a+b)x+ab即可.(2)逆用乘法公式(x+a)

(x+b)=x2+(a+b)x+ab即可.【详解】(1)x2-7x-18=(x+2)(x-9);(2)x2+12xy-13y2=(x+13y)(x-y).本题考查因式分解的应用,解题的关键是学会逆用乘法公式(x+a)

(x+b)=x2+(a+b)x+ab,进行因式分解,属于中考常考题型.17、(1)见解析;(2)①见解析;②【解析】

(1)由折叠的性质可得PB=PG,∠B=∠G=90°,由“AAS”可证△AOP≌△GOE,可得OA=GO,即可得结论;(2)①由折叠的性质可得∠PGC=∠PBC=90°,∠BPC=∠GPC,BP=PG,BF=FG,由平行线的性质可得∠BPF=∠BFP=∠GPC,可得BP=BF,即可得结论;②由勾股定理可求BE的长,EC的长,由相似三角形的性质可得,可求BF=BP=5x=,由勾股定理可求PC的长,即可求解.【详解】证明:(1)∵四边形ABCD是矩形∴AB=CD,AD=BC,AD∥BC,∠A=∠B=90°∵将△PBC沿直线PC折叠,∴PB=PG,∠B=∠G=90°∵∠AOP=∠GOE,OP=OE,∠A=∠G=90°∴△AOP≌△GOE(AAS)∴AO=GO∴AO+OE=GO+OP∴AE=GP,∴AE=PB,(2)①∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,BP=PG,BF=FG∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF∴BP=BF=PG=GF∴四边形BFGP是菱形;②∵AE=9,CD=AB=12,AD=BC=GC=25,∴DE=AD-AE=16,BE==15,在Rt△DEC中,EC==20∵BE∥PG∴△CEF∽△CGP∴∴==∴设EF=4x,PG=5x,∴BF=BP=GF=5x,∵BF+EF=BE=15∴9x=15∴x=∴BF=BP=5x=,在Rt△BPC中,PC==∴==本题是相似形综合题,考查了折叠的性质,相似三角形的判定和性质,全等三角形的判定和性质,矩形的性质,菱形的判定和性质,勾股定理等知识,利用方程的思想解决问题是解本题的关键.18、(1)见解析;(2)见解析;(3)见解析.【解析】

(1)先利用菱形的性质,得出是等边三角形,再利用等边三角形的性质,即可解答(2)设,根据菱形的性质得出,由(1)可知,即可解答(3)连接,在上取点,使,延长至,使,连接,连接,设与的交点为,首先证明,再根据全等三角形的性质得出是等边三角形,然后再证明,即可解答【详解】(1)是等腰三角形;证明:∵四边形是菱形,∴,∵,∴是等边三角形,∴.∵,∴,∴是等腰三角形.(2)设.∵四边形是菱形,∴,∴.由(1)知,,同理可得:.∴,∴,∴,∴.∴.(3)成立;证明:如图2,连接,在上取点,使,延长至,使,连接,连接,设与的交点为.∵,,∴.∵,∴(ASA),∴,,∴,∴.∵,∵,∵,∴是等边三角形,∴.∵,∵,∴,∴.∵,∴,∴,∵,∴.此题考查全等三角形的判定与性质,菱形的性质,等边三角形的判定与性质,解题关键在于作辅助线一、填空题(本大题共5个小题,每小题4分,共20分)19、15【解析】

根据平行四边形与中位线的性质即可求解.【详解】∵四边形ABCD为平行四边形,的周长是30,∴△ADC的周长为30,∵点、分别是平行四边形的两边、的中点.∴DE=AD,DF=CD,EF=AC,∴则的周长=×30=15.此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质及中位线的性质.20、1cm.【解析】

根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,结合图形计算即可.【详解】∵DE为△ABC的中位线,∴DE=BC=4(cm),∵∠AFC为直角,E为AC的中点,∴FE=AC=3(cm),∴DF=DE﹣FE=1(cm),故答案为1cm.本题考查的是三角形中位线定理,直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.21、乙【解析】

根据方差的性质即可求解.【详解】∵,,则>,∴乙班学生的成绩比较稳定.故填乙此题主要考查方差的性质,解题的关键是熟知数据的稳定性.22、1【解析】

由D,E分别是边AB,AC的中点,首先判定DE是三角形的中位线,然后根据三角形的中位线定理求得BC的值即可.【详解】∵△ABC中,D、E分别是AB、AC边上的中点,∴DE是三角形的中位线,∵DE=3cm,∴BC=2DE=1cm.故答案为:1.本题重点考查了中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.23、13或;【解析】第三条边的长度为二、解答题(本大题共3个小题,共30分)24、(1)150°;(2)【解析】

(1)连接BD,首先证明△ABD是等边三角形,可得∠ADB=60°,DB=4,再利用勾股定理逆定理证明△BDC是直角三角形,进而可得答案;(2)过B作BE⊥AD,利用三角形函数计算出BE长,再利用△ABD的面积加上△BDC的面积可得四边形ABCD的面积.【详解】(1)连接BD,∵AB=AD,∠A=60°,∴△ABD是等边三角形,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论