![2024-2025学年广东省汕尾市甲子镇瀛江学校数学九上开学监测模拟试题【含答案】_第1页](http://file4.renrendoc.com/view14/M0A/0D/10/wKhkGWbs6HKAVbSCAAGN-BJN9Wc073.jpg)
![2024-2025学年广东省汕尾市甲子镇瀛江学校数学九上开学监测模拟试题【含答案】_第2页](http://file4.renrendoc.com/view14/M0A/0D/10/wKhkGWbs6HKAVbSCAAGN-BJN9Wc0732.jpg)
![2024-2025学年广东省汕尾市甲子镇瀛江学校数学九上开学监测模拟试题【含答案】_第3页](http://file4.renrendoc.com/view14/M0A/0D/10/wKhkGWbs6HKAVbSCAAGN-BJN9Wc0733.jpg)
![2024-2025学年广东省汕尾市甲子镇瀛江学校数学九上开学监测模拟试题【含答案】_第4页](http://file4.renrendoc.com/view14/M0A/0D/10/wKhkGWbs6HKAVbSCAAGN-BJN9Wc0734.jpg)
![2024-2025学年广东省汕尾市甲子镇瀛江学校数学九上开学监测模拟试题【含答案】_第5页](http://file4.renrendoc.com/view14/M0A/0D/10/wKhkGWbs6HKAVbSCAAGN-BJN9Wc0735.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页2024-2025学年广东省汕尾市甲子镇瀛江学校数学九上开学监测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在矩形ABCD中,对角线相交于点,则AB的长是A.3cm B.6cm C.10cm D.12cm2、(4分)如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积是()A.4 B.2 C.1 D.3、(4分)在“美丽乡村”评选活动中,某乡镇5个村的得分如下:90,88,96,92,96,这组数据的中位数和众数分别是()A.90,96 B.92,96 C.92,98 D.91,924、(4分)把分式中的x和y都扩大为原来的5倍,那么这个分式的值()A.扩大为原来的5倍 B.不变C.缩小到原来的 D.扩大为原来的倍5、(4分)如图,,矩形在的内部,顶点,分别在射线,上,,,则点到点的最大距离是()A. B. C. D.6、(4分)下列命题正确的是()A.对角线互相垂直的四边形是菱形B.一组对边相等,另一组对边平行的四边形是平行四边形C.对角线相等的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形7、(4分)点P(-4,2)关于原点对称点的坐标P’(-2,-2)则等于()A.6 B.-6 C.2 D.-28、(4分)关于x的一元二次方程(k﹣1)x2﹣2x+3=0有两个实数根,则k的取值范围是()A.k≤且k≠1 B.k≤ C.k<且k≠1 D.k<二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知直线与平行且经过点,则的表达式是__________.10、(4分)从长度为2、3、5、7的四条线段中任意选取三条,这三条线段能够构成三角形的概率是_________11、(4分)如果一组数据a,a,…a的平均数是2,那么新数据3a,3a,…3a的平均数是______.12、(4分)某商店销售型和型两种电脑,其中型电脑每台的利润为400元,型电脑每台的利润为500元,该商店计划一次性购进两种型号的电脑共100台,设购进型电脑台,这100台电脑的销售总利润为元,则关于的函数解析式是____________.13、(4分)将圆心角为90°,面积为4π的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为_____________________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在四边形中,,点为的中点,,交于点,,求的长.15、(8分)正方形的对角线相交于点,点又是正方形的一个顶点,而且这两个正方形的边长相等.试证明:无论正方形绕点怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的.16、(8分)在一棵树的10米高处有两只猴子,其中一只猴子爬下树走到离树20米的池塘,另一只猴子爬到树顶后直接跃向池塘的处,如果两只猴子所经过距离相等,试问这棵树有多高.17、(10分)如图,AD是△ABC的角平分线,线段AD的垂直平分线分别交AB和AC于点E、F,连接DE、DF.(1)试判定四边形AEDF的形状,并证明你的结论.(2)若DE=13,EF=10,求AD的长.(3)△ABC满足什么条件时,四边形AEDF是正方形?18、(10分)小芳和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小芳开始跑步中途改为步行.达到图书馆恰好用,小东骑自行车以的速度直接回家,两个离家的路程与各自离开出发地的时间之间的函数图象如图所示.(1)家与图书馆之间的路程为,小芳步行的速度为;(2)求小东离家的路程关于的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若直线y=ax+7经过一次函数y=4﹣3x和y=2x﹣1的交点,则a的值是_____.20、(4分)直线是由直线向上平移______个单位长度得到的一条直线.直线是由直线向右平移______个单位长度得到的一条直线.21、(4分)在一次射击训练中,某位选手五次射击的环数分别为6,9,8,8,9,则这位选手五次射击环数的方差为______.22、(4分)分式,,的最简公分母__________.23、(4分)根据指令,机器人在平面上能完成下列动作:先原地逆时针旋转角度,再朝其面对的方向沿直线行走距离,现机器人在平面直角坐标系的坐标原点,且面对轴正方向.请你给机器人下一个指令__________,使其移动到点.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在矩形ABCD中,对角线AC、BD相交于点O.若∠AOD=120°,AB=3,求AC的长.25、(10分)学校组织初二年级学生去参加社会实践活动,学生分别乘坐甲车、乙车,从学校同时出发,沿同一路线前往目的地.在行驶过程中,甲车先匀速行驶1小时后,提高速度继续匀速行驶,当甲车超过乙车40千米后停下来等候乙车,两车相遇后,甲车和乙车一起按乙车原来的速度匀速行驶到达目的地.如图是甲、乙两车行驶的全过程中经过的路程y(千米)与出发的时间x(小时)之间函数关系图象.根据图中提供的信息,解答下列问题:(1)甲车行驶的路程为______千米;(2)乙车行驶的速度为______千米/时,甲车等候乙车的时间为______小时;(3)甲、乙两车出发________小时,第一次相遇;(4)甲、乙两车出发________小时,相距20千米.26、(12分)已知函数y=x+(x>0),它的图象犹如老师的打钩,因此人称对钩函数.下表是y与x的几组对应值:x1234y4322234请你根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行探究.(1)如图,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象特征,仿照示例,完成下列表格中的函数变化规律:序号函数图象特征函数变化规律示例1在直线x=1右侧,函数图象呈上升状态当x>1时,y随x的增大而增大示例2函数图象经过点(2,2)当x=2时,y=2①函数图象的最低点是(1,2)②在直线x=1左侧,函数图象呈下降状态(3)当a≤x≤4时,y的取值范围为2≤y≤4,则a的取值范围为.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】试题解析:∵四边形ABCD是矩形,∴OA=OC=OB=OD=3,∴△AOB是等边三角形,∴AB=OA=3,故选A.点睛:有一个角等于得等腰三角形是等边三角形.2、C【解析】
根据正方形的性质可得OA=OB,∠OAE=∠OBF=45°,AC⊥BD,再利用ASA证明△AOE≌△BOF,从而可得△AOE的面积=△BOF的面积,进而可得四边形AFOE的面积=正方形ABCD的面积,问题即得解决.【详解】解:∵四边形ABCD是正方形,∴OA=OB,∠OAE=∠OBF=45°,AC⊥BD,∴∠AOB=90°,∵OE⊥OF,∴∠EOF=90°,∴∠AOE=∠BOF,∴△AOE≌△BOF(ASA),∴△AOE的面积=△BOF的面积,∴四边形AFOE的面积=正方形ABCD的面积=×22=1;故选C.本题主要考查了正方形的性质、全等三角形的判定与性质等知识,熟练掌握正方形的性质,证明三角形全等是解题的关键.3、B【解析】
众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【详解】众数是一组数据中出现次数最多的数,在这一组数据中96出现了2次,次数最多,故众数是96;将这组数据从小到大的顺序排列为:88,90,1,96,96,处于中间位置的那个数是1,那么由中位数的定义可知,这组数据的中位数是1.故选:B.本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4、B【解析】
先将x和y都扩大为原来的5倍,然后再化简,可得答案.【详解】解:分式中的x和y都扩大为原来的5倍,得,所以这个分式的值不变,故选:B.此题考查了分式的基本性质,关键是熟悉分式的运算法则.5、B【解析】
取DC的中点E,连接OE、DE、OD,根据三角形的任意两边之和大于第三边可知当O、E、D三点共线时,点D到点O的距离最大,再根据勾股定理求出DE的长,根据直角三角形斜边上的中线等于斜边的一半求出OE的长,两者相加即可得解.【详解】取中点,连接、、,,.在中,利用勾股定理可得.在中,根据三角形三边关系可知,当、、三点共线时,最大为.故选:.本题考查了直角三角形斜边上的中线等于斜边的一半得到性质,三角形的三边关系,矩形的性质,勾股定理,根据三角形的三边关系判断出点O、E、D三点共线时,点D到点O的距离最大是解题的关键.6、D【解析】试题分析:A.对角线互相垂直的四边形不一定是菱形,故本选项错误;B.一组对边相等,另一组对边平行的四边形不一定是平行四边形,也可能是等腰梯形,故本选项错误;C.对角线相等的四边形不一定是矩形,例如等腰梯形,故本选项错误;D.对角线互相垂直平分且相等的四边形是正方形,故本选项正确.故选D.考点:命题与定理.7、A【解析】
根据关于原点对称的点的坐标特点进行求解.【详解】解:∵点P(a-4,2)关于原点对称的点的坐标P′(-2,-2),∴a-4=2,∴a=6,故选:A.本题考查了关于原点对称的点的坐标特点,关键是熟记关于原点对称的点的横纵坐标都变为相反数.8、A【解析】
根据一元二次方程的定义和根的判别式的意义可得,然后求出两个不等式的公共部分即可.【详解】解:根据题意得解得所以k的范围为故选A.本题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;,方程没有实数根,熟知这些是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
先根据两直线平行的问题得到k=2,然后把(1,3)代入y=2x+b中求出b即可.【详解】∵直线y=kx+b与y=2x+1平行,∴k=2,把(1,3)代入y=2x+b得2+b=3,解得b=1,∴y=kx+b的表达式是y=2x+1.故答案为:y=2x+1.此题考查一次函数中的直线位置关系,解题关键在于求k的值.10、【解析】
三角形的任意两边的和大于第三边,任意两边之差小于第三遍,本题只要把三边代入,看是否满足即可,把满足的个数除以4即可【详解】长度为2、3、5、7的四条线段中任意选取三条共有:2、3、5;2、3、7;3、5、7;2、5、7,共4种情况,能够构成三角形的只有3、5、7这一种,所以概率是本题结合三角形三边关系与概率计算知识点,掌握好三角形三边关系是解题关键11、6【解析】
根据所给的一组数据的平均数写出这组数据的平均数的表示式,把要求的结果也有平均数的公式表示出来,根据前面条件得到结果.【详解】解:一组数据,,,的平均数为2,,,,,的平均数是故答案为6本题考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.12、【解析】
根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式.【详解】解:根据题意,y=400x+500(100-x)=-100x+50000;故答案为本题主要考查了一次函数的应用,解题的关键是根据总利润与销售数量的数量关系列出关系式.13、1【解析】
设扇形的半径为R,则=4π,解得R=4,设圆锥的底面半径为r,根据题意得=4π,解得r=1,即圆锥的底面半径为1.三、解答题(本大题共5个小题,共48分)14、【解析】
连接BD,作CF⊥AB于F,由线段垂直平分线的性质得出BD=AD,AE=BE,得出∠DBE=∠DAB=30°,由直角三角形的性质得出BD=AD=2DE=2,AE=BE=DE=3,证出△BCD是直角三角形,∠CBD=90°,得出∠BCF=30°,得出BF=BC=,CF=BF=,求出EF=BE+BF=,在Rt△CEF中,由勾股定理即可得出结果.【详解】解:连接,作于,如图所示:则,点为的中点,,,,,,,,是直角三角形,,,,,,,在中,由勾股定理得:;【点睛】本题考查勾股定理,解题关键在于求得EF=BE+BF.15、见解析.【解析】
分两种情况讨论:(1)当正方形边与正方形的对角线重合时;(2)当转到一般位置时,由题求证,故两个正方形重叠部分的面积等于三角形的面积,得出结论.【详解】(1)当正方形绕点转动到其边,分别于正方形的两条对角线重合这一特殊位置时,显然;(2)当正方形绕点转动到如图位置时,∵四边形为正方形,∴,,,即又∵四边形为正方形,∴,即,∴,在和中,,∴,∵,又,∴.此题考查正方形的性质,三角形全等的判定与性质,三角形的面积等知识点.16、树高为15m.【解析】
设树高BC为xm,则可用x分别表示出AC,利用勾股定理可得到关于x的方程,可求得x的值.【详解】解:设树高BC为xm,则CD=x-10,则题意可知BD+AB=10+20=30,∴AC=30-CD=30-(x-10)=40-x,∵△ABC为直角三角形,∴AC2=AB2+BC2,即(40-x)2=202+x2,解得x=15,即树高为15m,本题主要考查勾股定理的应用,用树的高度表示出AC,利用勾股定理得到方程是解题的关键.17、(1)四边形AEDF是菱形,证明见解析;(2)24;(3)当△ABC中∠BAC=90°时,四边形AEDF是正方形;【解析】
(1)由∠BAD=∠CAD,AO=AO,∠AOE=∠AOF=90°证△AEO≌△AFO,推出EO=FO,得出平行四边形AEDF,根据EF⊥AD得出菱形AEDF;(2)由(1)知菱形AEDF对角线互相垂直平分,故AO=AD=4,根据勾股定理得EO=3,从而得到EF=6;(3)根据有一个角是直角的菱形是正方形可得∠BAC=90°时,四边形AEDF是正方形.【详解】(1)四边形AEDF是菱形,∵AD平分∠BAC,∴∠1=∠2,又∵EF⊥AD,∴∠AOE=∠AOF=90°∵在△AEO和△AFO中∵,∴△AEO≌△AFO(ASA),∴EO=FO,∵EF垂直平分AD,∴EF、AD相互平分,∴四边形AEDF是平行四边形又EF⊥AD,∴平行四边形AEDF为菱形;(2)∵EF垂直平分AD,AD=8,∴∠AOE=90°,AO=4,在RT△AOE中,∵AE=5,∴EO==3,由(1)知,EF=2EO=6;(3)当△ABC中∠BAC=90°时,四边形AEDF是正方形;∵∠BAC=90°,∴四边形AEDF是正方形(有一个角是直角的菱形是正方形).本题考查了菱形的判定和正方形的判定,解题的关键是掌握邻边相等的平行四边形是菱形,有一个角是直角的菱形是正方形.18、(1)4000,100;(2),自变量的范围为;(3)两人相遇时间第8分钟.【解析】
(1)认真分析图象得到路程与速度数据;
(2)采用方程思想列出小东离家路程y与时间x之间的函数关系式;
(3)两人相遇实际上是函数图象求交点.【详解】(1)由图象可得:家与图书馆之间的路程为4000米,小芳步行的速度为(2)∵小东骑自行车以的速度直接回家∴他离家的路程自变量的范围为(3)由图像可知,两人相遇是在小玲改变速度之前解得两人相遇时间第8分钟.本题是一次函数实际应用问题,考查了对一次函数图象代表意义的分析和从方程角度解决一次函数问题.一、填空题(本大题共5个小题,每小题4分,共20分)19、-2【解析】根据题意,得4﹣3x=2x﹣1,解得x=1,∴y=1.把(1,1)代入y=ax+7,得a+7=1,解得a=﹣2.故答案为﹣2.20、2,1.【解析】
根据平移中解析式的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减,可得出答案.【详解】解:直线是由直线向上平移2个单位长度得到的一条直线.由直线向右平移1个单位长度得到.故答案是:2;1.本题考查一次函数图象与几何变换,掌握平移中解析式的变化规律是:左加右减;上加下减是解题的关键.21、1.1【解析】分析:先求出平均数,再运用方差公式S1=[(x1-)1+(x1-)1+…+(xn-)1],代入数据求出即可.详解:解:五次射击的平均成绩为=(6+9+8+8+9)=8,方差S1=[(6﹣8)1+(9﹣8)1+(8﹣8)1+(8﹣8)1+(9﹣8)1]=1.1.故答案为1.1.点睛:
本题考查了方差的定义.一般地设n个数据,x1,x1,…xn的平均数为,则方差S1=[(x1-)1+(x1-)1+…+(xn-)1],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.22、【解析】
确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【详解】分式,,的分母分别是x、3xy、6(x-y),故最简公分母是,故答案为.此题考查最简公分母,难度不大23、[3,135°].【解析】
解决本题要根据旋转的性质,构造直角三角形来解决.【详解】解:如图所示,设此点为C,属于第二象限的点,过C作CD⊥x轴于点D,那么OD=DC=3,
∴∠COD=45°,OC=OD÷cos45°=,则∠AOC=180°−45°=135°,那么指令为:[,135°]故答案为:[,135°]本题考查求新定义下的点的旋转坐标;应理解运动指令的含义,构造直角三角形求解.二、解答题(本大题共3个小题,共30分)24、1【解析】
依据矩形的性质可知△AOB是等边三角形,所以AO=AB=3,则AC=2AO=1.【详解】解:∵在矩形ABCD中,
∴AO=BO=CO=DO.
∵∠AOD=120°,
∴∠AOB=10°.
∴△AOB是等边三角形.
∴AO=AB=3,
∴AC=2AO=1.本题主要考查了矩形的性质,矩形中对角线相等且互相平分,则其分成的四条线段都相等.25、560
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 装修进度款支付合同
- 药品冷链运输保密合同
- 商业空间装修施工合同范本
- 包包购销合同
- 咨询服务合同终止协议书年
- 互联网广告投放策略与实践案例
- 建筑项目居间合同
- 出租打印机合同年
- 图书购销合同范例
- 工程管理咨询合同
- 2 找春天 公开课一等奖创新教学设计
- 2025年江苏护理职业学院高职单招语文2018-2024历年参考题库频考点含答案解析
- 2025年江苏南京水务集团有限公司招聘笔试参考题库含答案解析
- 建筑工程施工安全管理课件
- 2025年上半年毕节市威宁自治县事业单位招考考试(443名)易考易错模拟试题(共500题)试卷后附参考答案
- 处方点评知识培训
- 2025年新合同管理工作计划
- 2024年02月北京2024年中信银行北京分行社会招考(0223)笔试历年参考题库附带答案详解
- 2024年高考语文备考之文言文阅读简答题答题指导
- 《中国移动公司简介》课件
- 《志愿军-存亡之战》观后感小学生
评论
0/150
提交评论