版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届陕西省安康市汉滨区恒口高中学服务区数学八上期末质量检测模拟试题量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.视力表中的字母“”有各种不同的摆放方向,下列图中两个“”不成轴对称的是()A. B. C. D.2.下列判定直角三角形全等的方法,不正确的是()A.两条直角边对应相等 B.两个锐角对应相等C.斜边和一直角边对应相等 D.斜边和一锐角对应相等3.下列运算正确的是:()A. B. C. D.4.已知,则以为三边的三角形的面积为()A. B.1 C.2 D.5.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是A.(0,0) B.(0,1) C.(0,2) D.(0,3)6.如图,在下列四组条件中,不能判断的是()A.B.C.D.7.一个长方形的周长为12cm,一边长为x(cm),则它的另一条边长y关于x的函数关系用图象表示为()A. B. C. D.8.下列各组数中,是方程的解的是()A. B. C. D.9.某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:册数0123人数13352923关于这组数据,下列说法正确的是()A.众数是2册 B.中位数是册 C.极差是2册 D.平均数是册10.若,则的值为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在中,,,点是延长线上的一点,则的度数是______°.12.计算的结果是________.13.若关于的方程的解为正数,则的取值范围是_______.14.如图,在中,,是边上两点,且所在的直线垂直平分线段,平分,,则的长为________.15.分解因式:12a2-3b2=____.16.在中,已知,点分别是边上的点,且.则______.17.如图,矩形ABCD中,直线MN垂直平分AC,与CD,AB分别交于点M,N.若DM=2,CM=3,则矩形的对角线AC的长为_____.18.已知点P(x,y)是一次函数y=x+4图象上的任意一点,连接原点O与点P,则线段OP长度的最小值为_____.三、解答题(共66分)19.(10分)去年冬天某市遭遇持续暴雪天气,该市启用了清雪机,已知一台清雪机的工作效率相当于一名环卫工人工作效率的200倍,若用这台清雪机清理6000立方米的雪,要比120名环卫工人清理这些雪少用小时,试求一台清雪机每小时清雪多少立方米.20.(6分)同学们,我们以前学过完全平方公式,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的非负数(以及0)都可以看作是一个数的平方,如,,下面我们观察:,反之,,∴,∴求:(1);(2);(3)若,则m、n与a、b的关系是什么?并说明理由.21.(6分)甲、乙两人做某种机器零件,已知甲每小时比乙多做6个,甲做90个零件所用的时间和乙做60个零件所用时间相等,求甲、乙每小时各做多少个零件?22.(8分)阅读下面内容,并解答问题.在学习了平行线的性质后,老师请学们证明命题:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直。小颖根据命题画出图形并写出如下的已知条件.已知:如图1,,直线分别交,于点,.的平分线与的平分线交于点.求证:______________.(1)请补充要求证的结论,并写出证明过程;(2)请从下列A、B两题中任选一题作答,我选择_______题.A.在图1的基础上,分别作的平分线与的平分线交于点,得到图2,则的度数为_______.B.如图3,,直线分别交,于点,.点在直线,之间,且在直线右侧,的平分线与的平分线交于点,则与满足的数量关系为_______.23.(8分)已知:如图,点在线段上,.求证:.24.(8分)如图,已知A(0,4),B(﹣2,2),C(3,0).(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1,B1的坐标:A1,B1;(3)若每个小方格的边长为1,求△A1B1C1的面积.25.(10分)综合与探究(1)操作发现:如图1,点D是等边△ABC边BA上一动点(点D与点B不重合),连结DC,以DC为边在CD上方作等边△DCF,连结AF,你能发现线段AF与BD之间的数量关系吗?证明你发现的结论.(2)类比猜想:如图2,当动点D运动至等边△ABC边BA的延长线上时,其余条件不变,猜想:(1)中的结论是否成立,并说明理由.(3)拓展探究:如图3.当动点D在等边△ABC边BA上运动时(点D与点B不重合),连结DC,以DC为边在CD上方和下方分别作等边△DCF和等边△DCF′,连结AF,BF′,探究:AF、BF′与AB有何数量关系?并说明理由.26.(10分)如图,在△ABC中,AB=AC,D、E分别是AB、BC的中点,EF⊥AC,垂足F;(1)求证:AD=DE;(2)求证:DE⊥EF.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据两个图形成轴对称的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形成轴对称,逐一分析即可.【详解】解:A选项中两个“”成轴对称,故本选项不符合题意;B选项中两个“”成轴对称,故本选项不符合题意;C选项中两个“”成轴对称,故本选项不符合题意;D选项中两个“”不成轴对称,故本选项符合题意;故选D.【点睛】此题考查的是两个图形成轴对称的识别,掌握两个图形成轴对称的定义是解决此题的关键.2、B【分析】根据全等三角形的判定方法一一判断即可.【详解】A、根据SAS可以判定三角形全等,本选项不符合题意.
B、AAA不能判定三角形全等,本选项符合题意.
C、根据HL可以判定三角形全等,本选项不符合题意.
D、根据AAS可以判定三角形全等,本选项不符合题意.
故选:B.【点睛】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.3、D【分析】根据幂的运算法则和完全平方公式逐项计算可得出正确选项.【详解】解:A.,故错误;B.,故错误;C.,故错误;D.,正确.故选:D【点睛】本题考查了幂的运算和完全平方公式,熟练掌握幂的运算法则是解题关键.4、B【分析】根据二次根式与偶数次幂的非负性,求出a,b,c的值,从而得到以为三边的三角形是直角三角形,进而即可求解.【详解】∵,∴,又∵,∴,∴a=1,b=2,c=,∴,∴以为三边的三角形是直角三角形,∴以为三边的三角形的面积=.故选B.【点睛】本题主要考查二次根式与偶数次幂的非负性以及勾股定理的逆定理,掌握二次根式与偶数次幂的非负性以及勾股定理的逆定理,是解题的关键.5、D【解析】解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,
此时△ABC的周长最小,
∵点A、B的坐标分别为(1,4)和(3,0),
∴B′点坐标为:(-3,0),则OB′=3过点A作AE垂直x轴,则AE=4,OE=1
则B′E=4,即B′E=AE,∴∠EB′A=∠B′AE,
∵C′O∥AE,
∴∠B′C′O=∠B′AE,∴∠B′C′O=∠EB′A∴B′O=C′O=3,
∴点C′的坐标是(0,3),此时△ABC的周长最小.
故选D.6、C【分析】根据全等三角形的判定定理逐一判断即可.【详解】解:A.若,利用SSS可证,故本选项不符合题意;B.若,利用SAS可证,故本选项不符合题意;C.若,两边及其一边的对角对应相等不能判定两个三角形全等,故本选项符合题意;D.若,利用ASA可证,故本选项不符合题意.故选C.【点睛】此题考查的是判定全等三角形所需的条件,掌握全等三角形的各个判定定理是解决此题的关键.7、B【解析】根据题意,可得y关于x的函数解析式和自变量的取值范围,进而可得到函数图像.【详解】由题意得:x+y=6,∴y=-x+6,∵,∴,∴y关于x的函数图象是一条线段(不包括端点),即B选项符合题意,故选B.【点睛】本题主要考查实际问题中的一次函数图象,根据题意,得到一次函数解析式和自变量的范围是解题的关键.8、B【分析】将四个答案逐一代入,能使方程成立的即为方程的解.【详解】解:A.,故错误;B.,故正确;C.,故错误;D.,故错误.故选:B.【点睛】本题考查二元一次方程的解,理解掌握方程的解的定义是解答关键.9、D【分析】根据众数、中位数、极差和平均数的定义,逐一判定即可.【详解】A、众数是1册,故错误;B、中位数是2册,故错误;C、极差=3-0=3册,故错误;D、平均数是(0×13+1×35+2×29+3×23)÷100=1.62册,故正确;故答案为D.【点睛】此题主要考查统计调查中的相关概念,熟知概念是解题关键.10、A【解析】试题解析:设故选A.二、填空题(每小题3分,共24分)11、1【分析】根据三角形外角的性质:三角形的外角等于与它不相邻的两个内角之和,即可求出的度数.【详解】解:∵,,是△ABC的外角∴=+∠A=1°故答案为:1.【点睛】此题考查是三角形外角的性质,掌握三角形的外角等于与它不相邻的两个内角之和是解决此题的关键.12、【分析】由题意根据运算顺序,先把各个分式进行乘方运算,再进行分式的乘除运算即可得出答案.【详解】解:故答案为:.【点睛】本题主要考查分式的乘除法,解题时注意分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.13、且【分析】根据分式方程的解法,解出x,再根据题意列出不等式求解即可.【详解】解:∵去分母得:解得:因为方程的解为正数,∴∴,又∵,∴∴,∴m的取值范围为:且故答案为:且.【点睛】本题考查了根据分式方程解的情况求分式方程中的参数,解题的关键是掌握分式方程的解法,并且注意分式方程增根的问题.14、1【分析】根据CE垂直平分AD,得AC=CD,再根据等腰三角形的三线合一,得∠ACE=∠ECD,结合角平分线定义和∠ACB=90°,得∠ACE=∠ECD=∠DCB=30°,则∠A=60°,进而求得∠B=30°,则BD=CD=AC,由此即可求得答案.【详解】∵CE垂直平分AD,∴AC=CD=1,∴∠ACE=∠ECD,∵CD平分∠ECB,∴∠ECD=∠DCB,∵∠ACB=90°,∴∠ACE=∠ECD=∠DCB=30°,∴∠A=90°-∠ACE=60°,∴∠B=90°-∠A=30°,∴∠DCB=∠B,∴BD=CD=1,故答案为:1.【点睛】本题考查了线段垂直平分线的性质,等腰三角形的判定与性质,直角三角形两锐角互余等知识,准确识图,熟练掌握和灵活运用相关知识是解题的关键.15、3(2a+b)(2a-b)【解析】12a2-3b2=3(4a2-b2)=3(2a+b)(2a-b);故答案是:3(2a+b)(2a-b)。16、.【分析】过B作DE的平行线,交AC于F;由于∠AED=∠CAB=60°,因此△ADE是等边三角形,则∠BDE=120°,联立∠CDB、∠CDE的倍数关系,即可求得∠CDE的度数;然后通过证△EDC≌△FCB,得到∠CDE=∠DCB+∠DCE,联立由三角形的外角性质得到的∠CDE+∠DCE=∠ADE=60°,即可求得∠DCB的度数【详解】如图,延长到点,使,连接.易知为等边三角形,则.又,所以也为等边三角形.则.,知.在等边中,由,知,因此,.【点睛】此题考查构造全等三角形、作平行线、联立倍数关系、全等三角形和三角形的外角性质,解题关键在于作辅助线17、【分析】连接AM,在Rt△ADM中,利用勾股定理求出AD2,再在Rt△ADC中,利用勾股定理求出AC即可.【详解】解:如图,连接AM.∵直线MN垂直平分AC,∴MA=MC=3,∵四边形ABCD是矩形,∴∠D=90°,∵DM=2,MA=3,∴AD2=AM2﹣DM2=32﹣22=5,∴AC=,故答案为:.【点睛】本题考查线段垂直平分线的性质,矩形的性质、勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18、【分析】线段OP长度的最小值,就是O点到直线y=x+4垂线段的长度,求得直线与坐标轴的交点,然后根据三角形面积即可求得线段OP长度的最小值.【详解】解:如图,一次函数y=x+4中,令y=0,求得x=3;令x=0,则y=4,∴A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,线段OP长度的最小值,就是O点到直线y=x+4垂线段的长度,∴OP⊥AB,∵OA•OB=,∴OP=.故答案为.【点睛】本题考查了一次函数图象上点的坐标特征,勾股定理的应用,三角形的面积,理解“垂线段最短”是本题的解题关键.三、解答题(共66分)19、一台清雪机每小时晴雪1500立方米.【分析】解设出环卫工人每小时清雪立方米,则一台清雪机每小时清雪立方米,根据等量关系式:一台清雪机清理6000立方米的积雪所用时间=120名环卫工人清理积雪所用时间-小时,列出方程即可求解.【详解】解:设一名环卫工人每小时清雪立方米,则一台清雪机每小时清雪立方米根据题意得:解得:检验:是原方程得解当时,.答:一台清雪机每小时晴雪1500立方米.【点睛】本题考查的是分式方程的应用,根据题目意思设出未知数,找出等量关系式是解此题的关键.20、(1);(2);(3),,理由见解析【分析】(1)将3拆分为2+1,再根据完全平方公式和二次根式化简即可求解;
(2)将4拆分为3+1,再根据完全平方公式和二次根式化简即可求解;
(3)利用二次根式的性质结合完全平方公式直接化简得出即可.【详解】解:(1)==;(2);(3)m+n=a,mn=b.理由:∵,∴,∴m+n+2=a+2,∴m+n=a,mn=b【点睛】此题主要考查了二次根式的性质与化简,正确理解二次根式化简的意义是解题关键.21、甲每小时做18个,乙每小时做12个零件.【分析】本题的等量关系为:甲每小时做的零件数量﹣乙每小时做的零件数量=6;甲做90个所用的时间=乙做60个所用的时间.由此可得出方程组求解.【详解】解:设甲每小时做x个零件,乙每小时做y个零件.由题意得:解得:,经检验x=18,y=12是原方程组的解.答:甲每小时做18个,乙每小时做12个零件.考点:二元一次方程组的应用;分式方程的应用.22、(1);证明见解析;(2)A.,B..【分析】(1)由AB∥CD,可知∠BEF与∠DFE互补,由角平分线的性质可得,由三角形内角和定理可得∠G=,则;(2)A,由(1)可知,根据角平分线的性质可得,故,根据三角形的内角和即可求出=;B,设,,故=,再得到,根据角平分线的性质可得,则,再求出,即可比较得到结论.【详解】(1);证明:,,平分,平分,,,.在中,,,.(2)A,由(1)可知,∵的平分线与的平分线交于点∴,则,∴==故答案为:A;45;B,设,,∴=,则,∵的平分线与的平分线交于点∴,∴,∴==,∵=,故故答案为:B;.【点睛】本题考查了平行线的性质、角平分线的定义、三角形内角和定理,熟练掌握这些定理是解题的关键.23、见解析.【分析】根据题意先证明△ABC≌△DEF,据此求得∠ABC=∠DEF,再利用平行线的判定进一步证明即可.【详解】∵,∴∠ACB=∠DFE,∵BE=CF,∴BE+EC=CF+EC,即:BC=EF,在△ABC与△DEF中,∵AC=DF,∠ACB=∠DFE,BC=EF,∴△ABC≌△DEF(SAS),∴∠ABC=∠DEF,∴AB∥DE.【点睛】本题主要考查了平行线的性质与判定及全等三角形的性质与判定,熟练掌握相关概念是解题关键.24、(1)见解析;(2)A1(0,﹣4),B1(﹣2,﹣2);(3)△A1B1C1的面积为11.【分析】(1)先作出A,B,C关于x轴的对称点A1,B1,C1,再连接即可.(2)直接写出这两点坐标即可.(3)采用割补法进行解答即可.【详解】解:(1)△A1B1C1即为所求;(2)A1(0,﹣4),B1(﹣2,﹣2)(3)△A1B1C1的面积=4×6﹣×2×5﹣×2×2﹣×3×4=11【点睛】本题考查了轴对称的相关知识,解答的关键在于作出△ABC关于x轴对称的△A1B1C1.25、(1)AF=BD,证明见解析;(2)AF=BD,理由见解析;(3)AF+BF′=AB,理由见解析.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软件工程项目课程设计
- 2024-2030年中国花卉苗木种植市场需求量调研与投资价值前景研究报告
- 2024-2030年中国耳鸣康复仪行业竞争动态及应用趋势预测研究报告
- 2024-2030年中国番泻叶供需状况及市场规模预测分析研究报告
- 2024-2030年中国瑶粒绒套装行业市场运营模式及未来发展动向预测研究报告
- 2024-2030年中国溴化环氧树脂行业未来趋势与投资盈利预测报告
- 2024-2030年中国有源RFID电池市场营销策略与发展前景预测分析研究报告
- 2024-2030年中国手机饰品行业运营模式及竞争策略分析研究报告()
- 2024-2030年中国小型标准体积管行业竞争状况与运营效益预测报告
- 2024-2030年中国固态继电器行业现状态势与应用前景预测报告
- 《矿山机械设备》复习题
- 冷库工程特点施工难点分析及对策
- 中国古代楼阁PPT课件
- 排舞教案_图文
- 简单趋向补语:V上下进出回过起PPT课件
- 路由和波长分配PPT课件
- 超声检测工艺卡
- 公司“师带徒”实施方案
- AP1000反应堆结构设计
- 《内科护理学》病例分析(完整版)
- 5GQoS管理机制介绍
评论
0/150
提交评论