版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吴忠市重点中学2025届八年级数学第一学期期末达标检测试题检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.关于x的分式方程的解为正实数,则实数m可能的取值是()A.2 B.4 C.6 D.72.正比例函数()的函数值随着增大而减小,则一次函数的图象大致是()A. B.C. D.3.如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3 B.4C.5 D.64.若分式的值为零,则x=()A.3 B.-3 C.±3 D.05.在下面四个数中,是无理数的是()A.3.1415 B. C. D.6.如果代数式(x﹣2)(x2+mx+1)的展开式不含x2项,那么m的值为()A.2 B. C.-2 D.7.下列各数,准确数是()A.小亮同学的身高是 B.小明同学买了6支铅笔C.教室的面积是 D.小兰在菜市场买了3斤西红柿8.下列各式中,计算结果是的是()A. B. C. D.9.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,F是CB延长线上一点,AF⊥CF,垂足为F.下列结论:①∠ACF=45°;②四边形ABCD的面积等于AC2;③CE=2AF;④S△BCD=S△ABF+S△ADE;其中正确的是()A.①② B.②③ C.①②③ D.①②③④10.若等腰△ABC的周长为20,AB=8,则该等腰三角形的腰长为().A.8 B.6 C.4 D.8或611.下列各组数据中,不是勾股数的是A.3,4,5 B.7,24,25 C.8,15,17 D.5,7,912.下列各式中,正确的是()A.=±4 B.±=4 C. D.二、填空题(每题4分,共24分)13.如图,在数轴上,点A、B表示的数分别为0、2,BC⊥AB于点B,且BC=1,连接AC,在AC上截取CD=BC,以A为圆心,AD的长为半径画弧,交线段AB于点E,则点E表示的实数是_____.14.如图,在中,,是的中点,,垂足为,,则的度数是______.15.如图,中,DE垂直平分BC交BC于点D,交AB于点E,,,则______.16.设三角形三边之长分别为2,9,,则的取值范围为______.17.如图,B处在A处的南偏西45°方向,C处在A处的南偏东20°方向,C处在B处的北偏东80°方向,则∠ACB=_____°.18.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“”方向排列,如,,,,,根据这个规律,第个点的坐标为______.三、解答题(共78分)19.(8分)某厂的甲、乙两个小组共同生产某种产品,若甲组先生产1天,然后两组又各自生产5天,则两组产品一样多;若甲组先生产了300个产品,然后两组又各自生产了4天,则乙组比甲组多生产100个产品;甲、乙两组每天各生产多少个产品?(请用方程组解)20.(8分)已知:△ABC中,BO平分∠ABC,CO平分∠ACB(1)如图1,∠BOC和∠A有怎样的数量关系?请说明理由(2)如图2,过O点的直线分别交△ABC的边AB、AC于E、F(点E不与A,B重合,点F不与A、C重合),BP平分外角∠DBC,CP平分外角∠GCB,BP,CP相交于P.求证:∠P=∠BOE+∠COF;(3)如果(2)中过O点的直线与AB交于E(点E不与A、B重合),与CA的延长线交于F在其它条件不变的情况下,请直接写出∠P、∠BOE、∠COF三个角之间的数量关系.21.(8分)如图,四边形ABCD是直角梯形,AD∥BC,AB⊥AD,且AB=AD+BC,E是DC的中点,连结BE并延长交AD的延长线于G.(1)求证:DG=BC;(2)F是AB边上的动点,当F点在什么位置时,FD∥BG;说明理由.(3)在(2)的条件下,连结AE交FD于H,FH与HD长度关系如何?说明理由.22.(10分)已知点A(0,4)、C(﹣2,0)在直线l:y=kx+b上,l和函数y=﹣4x+a的图象交于点B(1)求直线l的表达式;(2)若点B的横坐标是1,求关于x、y的方程组的解及a的值.(3)若点A关于x轴的对称点为P,求△PBC的面积.23.(10分)如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.(1)如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?24.(10分),两种机器人都被用来搬运化工原料,型机器人每小时搬运的化工原料是型机器人每小时搬运的化工原料的1.5倍,型机器人搬运900所用时间比型机器人搬运800所用时间少1小时.(1)求两种机器人每小时分别搬运多少化工原料?(2)某化工厂有8000化工原料需要搬运,要求搬运所有化工原料的时间不超过5小时,现计划先由6个型机器人搬运3小时,再增加若干个型机器人一起搬运,请问至少要增加多少个型机器人?25.(12分)学校举行广播操比赛,八年级三个班的各项得分及三项得分的平均数如下(单位:分).服装统一服装统一动作规范三项得分平均分一班80848884二班97788085三班90788484根据表中信息回答下列问题:学校将“服装统一”、“队形整齐”、“动作规范”三项按的比例计算各班成绩,求八年级三个班的成绩;由表中三项得分的平均数可知二班排名第一,在的条件下,二班成绩的排名发生了怎样的变化,请你说明二班成绩排名发生变化的原因.26.已知:如图,在矩形ABCD中,AB=6,BC=8,E为直线BC上一点.(1)如图1,当E在线段BC上,且DE=AD时,求BE的长;(2)如图2,点E为BC延长长线上一点,若BD=BE,连接DE,M为ED的中点,连接AM,CM,求证:AM⊥CM;(3)如图3,在(2)条件下,P,Q为AD边上的两个动点,且PQ=5,连接PB、MQ、BM,求四边形PBMQ的周长的最小值.
参考答案一、选择题(每题4分,共48分)1、B【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【详解】解:方程两边同乘(x-1)得,x+m-1m=3x-6,解得,由题意得,>0解得,m<6,又∵≠1∴m≠1,∴m<6且m≠1.故选:B【点睛】本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.2、B【分析】根据正比例函数的性质得到k<0,然后根据一次函数的性质可得一次函数的图像经过一、三象限,且与y轴的正半轴相交.【详解】解:正比例函数()的函数值随着增大而减小.k<0.一次函数的一次项系数大于0,常数项大于0.一次函数的图像经过一、三象限,且与y轴的正半轴相交.故选:B.【点睛】本题考查了一次函数的图象和性质,灵活掌握一次函数图象和性质是解题的关键.3、D【解析】试题分析:先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选D.考点:翻折变换(折叠问题);勾股定理.4、B【分析】根据题意分式的值等于1时,分子就等于1且分母不为1.即可求出答案.【详解】解:∵分式的值为零,∴,且,∴,且,∴;故选:B.【点睛】考查了分式的值为零的条件,分式的值的由分子分母共同决定,熟记分式的值为1是解题的关键.5、C【解析】根据无理数的定义解答即可.【详解】解:在3.1415、、、中,无理数是:.故选:C.【点睛】本题考查了无理数的定义,属于应知应会题型,熟知无理数的概念是关键.6、A【分析】根据“代数式(x﹣2)(x2+mx+1)的展开式不含x2项”可知x2系数等于0,所以将代数式整理计算后合并同类项,即可得出x2的系数,令其等于0解答即可.【详解】原式=∵代数式不含x2项∴m-2=0,解得m=2故答案选A.【点睛】本题考查的是多项式的乘法和不含某项的问题,知道不含某项,代表某项的系数为0是解题的关键.7、B【解析】根据准确数与近似数的概念逐一判断即可.【详解】解:A、小亮同学的身高是,是近似数,故A错误;B、小明同学买了6支铅笔,是准确数,故B正确;C、教室的面积是,是近似数,故C错误;D、小兰在菜市场买了3斤西红柿,是近似数,故D错误;故答案为:B.【点睛】本题考查了准确数与近似数的概念,掌握并理解基本概念是解题的关键.8、D【解析】试题分析:利用十字相乘法进行计算即可.原式=(x-2)(x+9)故选D.考点:十字相乘法因式分解.9、C【分析】证明≌,得出,正确;由,得出,正确;证出,,正确;由,不能确定,不正确;即可得出答案.【详解】解:∵∠CAE=90°,AE=AC,∴∠E=∠ACE=45°,∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=∠EAD+∠CAD∴∠BAC=∠EAD,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACF=∠E=45°,①正确;∵S四边形ABCD=S△ABC+S△ACD,∴S四边形ABCD=S△ADE+S△ACD=S△ACE=AC2,②正确;∵△ABC≌△ADE,∠ACB=∠AEC=45°,∵∠ACE=∠AEC=45°,∴∠ACB=∠ACE,∴AC平分∠ECF,过点A作AG⊥CG,垂足为点G,如图所示:∵AC平分∠ECF,AF⊥CB,∴AF=AG,又∵AC=AE,∴∠CAG=∠EAG=45°,∴∠CAG=∠EAG=∠ACE=∠AEC=45°,∴CG=AG=GE,∴CE=2AG,∴CE=2AF,③正确;∵S△ABF+S△ADE=S△ABF+S△ABC=S△ACF,不能确定S△ACF=S△BCD,④不正确;故选:C.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;证明三角形全等是解题的关键.10、D【分析】AB=8可能是腰,也可能是底边,分类讨论,结合等腰三角形的两条腰相等计算出三边,并用三角形三边关系检验即可.【详解】解:若AB=8是腰,则底长为20-8-8=4,三边为4、8、8,能组成三角形,此时腰长为8;若AB=8是底,则腰长为(20-8)÷2=6,三边为6、6、8,能组成三角形,此时腰长为6;综述所述:腰长为8或6.故选:D.【点睛】本题考查等腰三角形的性质和三角形三边的关系,分类讨论是关键.11、D【解析】根据勾股数的定义(满足的三个正整数,称为勾股数)判定则可.【详解】A、,能构成直角三角形,是正整数,故是勾股数;
B、,能构成直角三角形,是正整数,故是勾股数;
C、,能构成直角三角形,故是勾股数;
D、,不能构成直角三角形,是正整数,故不是勾股数;
故选D.【点睛】本题考查的知识点是勾股数的定义,解题关键是注意勾股数不光要满足,还必须要是正整数.12、C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得.【详解】A、,此项错误;B、,此项错误;C、,此项正确;D、,此项错误;故选:C.【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键.二、填空题(每题4分,共24分)13、【解析】∵∠ABC=90°,AB=2,BC=1,∴AC==,∵CD=CB=1,∴AD=AC-CD=-1,∴AE=-1,∴点E表示的实数是-1.14、65【分析】首先根据三角形的三线合一的性质得到AD平分∠BAC,然后求得其一半的度数,从而求得答案.【详解】∵AB=AC,D为BC的中点,∴∠BAD=∠CAD,∵∠BAC=50°,∴∠DAC=25°,∵DE⊥AC,∴∠ADE=90°−25°=65°,故答案为65°.【点睛】本题考查了等腰三角形的性质,解题的关键是了解等腰三角形三线合一的性质,难度不大.15、【分析】利用线段垂直平分线的性质和等边对等角可得,从而可求得,再利用三角形内角和定理即可得解.【详解】解:∵DE垂直平分BC交BC于点D,,∴EC=BE,∴,∵,∴,∴.故答案为:.【点睛】本题考查垂直平分线的性质,等腰三角形的性质.理解垂直平分线的点到线段两端距离相等是解题关键.16、【分析】根据三角形的三边关系,两边之和大于第三边,两边之差小于第三边列不等式求解即可.【详解】解:三角形三边之长分别为2,9,..解得.故答案:.【点睛】本题考查了根据三角形的三边关系建立不等式组解决实际问题的运用,不等式组解法的运用和根据三角形的三边关系建立不等式组是解答本题的关键.17、1【分析】根据题意,得出方向角的度数,然后根据平行线的性质和三角形的内角和计算即可.【详解】解:由题意得,∠EAB=45°,∠EAC=20°,则∠BAC=65°,∵BD∥AE,∴∠DBA=∠EAB=45°,又∵∠DBC=1°,∴∠ABC=35°,∴∠ACB=11°﹣65°﹣35°=1°.故答案为:1.【点睛】本题主要考察了平行线的性质以及三角形的内角和,根据题意正确得出方向角是解题的关键.18、【分析】根据题意,得到点的总个数等于轴上右下角的点的横坐标的平方,由于,所以第2020个点在第45个矩形右下角顶点,向上5个单位处.【详解】根据图形,以最外边的矩形边长上的点为准,点的总个数等于轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为,共有个,右下角的点的横坐标为时,共有个,,右下角的点的横坐标为时,共有个,,右下角的点的横坐标为时,共有个,,右下角的点的横坐标为时,共有个,,是奇数,第个点是,第个点是,故答案为:.【点睛】本题考查了规律的归纳总结,重点是先归纳总结规律,然后在根据规律求点位的规律.三、解答题(共78分)19、甲:500,乙:600【解析】试题分析:设甲、乙两组每天个各生产个产品,则根据若甲组先生产1天,然后两组又一起生产了5天,则两组产量一样多.若甲组先生产了300个产品,然后两组同时生产4天,则乙组比甲组多生产100个产品两个关系列方程组求解.试题解析:设甲、乙两组每天个各生产x、y个产品,根据题意得:解得:答:甲、乙两组每天个各生产500、600个产品.20、(1)∠BOC=90°+∠A,理由详见解析;(2)详见解析;(3)∠BOE+∠COF﹣∠P=180°.【分析】(1)根据三角形的内角和等于180°求出∠ABC+∠ACB的度数,再根据角平分线的定义求出∠OBC+∠OCB的度数,然后利用三角形的内角和等于180°列式计算即可得解;(2)证明∠P=90°﹣∠A,得到∠P+∠BOC=180°即可解决问题;(3)画出图形由∠P+∠BOC=180°,∠BOC+∠BOE+∠COF=360°,可得∠BOE+∠COF﹣∠P=180°.【详解】解:(1)∵∠ABC+∠ACB=180°﹣∠A,BO平分∠ABC,CO平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=90°+∠A;(2)∵BP、CP分别平分外角∠DBC、∠GCB,∴∠PBC=∠CBD,∠PCB=∠BCG,∴∠P=180°﹣∠CBP﹣∠BCP)=180°﹣(∠CBD+∠BCG)=180°﹣(∠A+∠ACB+∠A+∠ABC)=180°﹣(180°+∠A)=90°﹣∠A,∴∠P+∠BOC=180°,∵∠BOC+∠BOE+∠COF=180°,∴∠P=∠BOE+∠COF;(3)如图3中,∵∠P+∠BOC=180°,∠BOC+∠BOE+∠COF=360°,∴∠BOE+∠COF﹣∠P=180°.【点睛】本题考查三角形内角和定理,三角形外角的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21、(1)见解析;(2)当F运动到AF=AD时,FD∥BG,理由见解析;(3)FH=HD,理由见解析【分析】(1)证明△DEG≌△CEB(AAS)即可解决问题.(2)想办法证明∠AFD=∠ABG=45°可得结论.(3)结论:FH=HD.利用等腰直角三角形的性质即可解决问题.【详解】(1)证明:∵AD∥BC,∴∠DGE=∠CBE,∠GDE=∠BCE,∵E是DC的中点,即DE=CE,∴△DEG≌△CEB(AAS),∴DG=BC;(2)解:当F运动到AF=AD时,FD∥BG.理由:由(1)知DG=BC,∵AB=AD+BC,AF=AD,∴BF=BC=DG,∴AB=AG,∵∠BAG=90°,∴∠AFD=∠ABG=45°,∴FD∥BG,故答案为:F运动到AF=AD时,FD∥BG;(3)解:结论:FH=HD.理由:由(1)知GE=BE,又由(2)知△ABG为等腰直角三角形,所以AE⊥BG,∵FD∥BG,∴AE⊥FD,∵△AFD为等腰直角三角形,∴FH=HD,故答案为:FH=HD.【点睛】本题考查了全等三角形的判定和性质,平行线的判定,等腰直角三角形的性质,掌握三角形全等的判定和性质是解题的关键.22、(1)y=2x+4(2)x=1,y=6;a=10(3)1【解析】(1)由于点A、C在直线上,可用待定系数法确定直线l的表达式;(2)先求出点B的坐标,即得方程组的解.代入组中方程求出a即可;(3)由于S△BPC=S△PAB+S△PAC,分别求出△PBA和△PAC的面积即可.【详解】(1)由于点A、C在直线l上,∴,∴k=2,b=4所以直线l的表达式为:y=2x+4(2)由于点B在直线l上,当x=1时,y=2+4=6所以点B的坐标为(1,6)因为点B是直线l与直线y=﹣4x+a的交点,所以关于x、y的方程组的解为,把x=1,y=6代入y=﹣4x+a中,得a=10;(3)如图:因为点A与点P关于x轴对称,所以点P(0,﹣4),所以AP=4+4=8,OC=2,所以S△BPC=S△PAB+S△PAC=×8×1+×8×2=4+8=1.【点睛】本题考查了待定系数法确定函数解析式、三角形的面积、直线与方程组的关系等知识点.方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.23、(1)①△BPD与△CQP全等,理由见解析;②当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等;(2)经过90s点P与点Q第一次相遇在线段AB上相遇.【分析】(1)①由“SAS”可证△BPD≌△CQP;
②由全等三角形的性质可得BP=PC=BC=5cm,BD=CQ=6cm,可求解;
(2)设经过x秒,点P与点Q第一次相遇,列出方程可求解.【详解】解:(1)①△BPD与△CQP全等,理由如下:∵AB=AC=18cm,AD=2BD,∴AD=12cm,BD=6cm,∠B=∠C,∵经过2s后,BP=4cm,CQ=4cm,∴BP=CQ,CP=6cm=BD,在△BPD和△CQP中,,∴△BPD≌△CQP(SAS),②∵点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,∵△BPD与△CQP全等,∠B=∠C,∴BP=PC=BC=5cm,BD=CQ=6cm,∴t=,∴点Q的运动速度=cm/s,∴当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等;(2)设经过x秒,点P与点Q第一次相遇,由题意可得:x﹣2x=36,解得:x=90,点P沿△ABC跑一圈需要(s)∴90﹣23×3=21(s),∴经过90s点P与点Q第一次相遇在线段AB上相遇.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,一元一次方程的应用,掌握全等三角形的判定是本题的关键.24、(1)型机器人每小时搬运,型机器人每小时搬运化工原料;(2)1【分析】(1)根据题意设型机器人每小时搬运,型机器人每小时搬运,列出方程组,求解即得;(2)由(1)知,6个型机器人搬运3小时运了(),设至少增加m个型机器人,要搬运8000,时间不超过5小时,可得不等式方程,解不等式即得.【详解】(1)设型机器人每小时搬运化工原料,型机器人每小时搬运化工原料,则解得:答:型机器人每小时搬运,型机器人每小时搬运化工原料.故答案为:,;(2)设需要增加m个型机器人,由题意知:解得:,由题意知m为正整数,所以m=1,经检验m=1满足题意.故答案为:1.【点睛】考查了分式方程组解应用题,列出方程式,解分式方程的步骤,以及检验根的存在性,注意验根的重要性,还考查了分式不等式的列式和求解,同样注意检验根要满足题意.25、一班的成绩为分,二班成绩为分,三班成绩为分;二班由第名变成了第名,原因见解析.【分析】(1)分别求出三个班的加权平均数即可;(2)根据加权平均数中“权”的分析即可.【详解】解:(1)一班的成绩为(分)二
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 漯河食品职业学院《机械工程材料与成形技术》2023-2024学年第一学期期末试卷
- 2024年版:版权许可及发行外包合同2篇
- 2025签订房屋租赁合同要审查哪些要点
- 2024年标准个人汽车短期租赁协议范本版
- 单位人事管理制度范例合集
- 旅游挑战之旅服务合同
- 外墙修复工程安全协议
- 娱乐产业合同工管理方案
- 2024年标准化园林材料采购合同版B版
- 2024双方智能电网建设与运营合作承诺书3篇
- 医学影像学论文5000
- 地下泉眼封堵施工方案
- 口腔诊所医师技术操作规范流程
- 人教版小学语文二年级上册期末试卷
- 众辰变频器z2400t-15gy-1说明书
- 二年级数学上册解决问题专项复习课件
- 小学信息技术校本教材
- 微型计算机原理与接口技术-南京邮电大学中国大学mooc课后章节答案期末考试题库2023年
- 简易租房合同下载word
- 共点力的平衡条件
- 2023年诸暨市提前招生试卷
评论
0/150
提交评论