上海市长宁区2025届数学八年级第一学期期末达标测试试题含解析_第1页
上海市长宁区2025届数学八年级第一学期期末达标测试试题含解析_第2页
上海市长宁区2025届数学八年级第一学期期末达标测试试题含解析_第3页
上海市长宁区2025届数学八年级第一学期期末达标测试试题含解析_第4页
上海市长宁区2025届数学八年级第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市长宁区2025届数学八年级第一学期期末达标测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图①,把4个长为a,宽为b的长方形拼成如图②所示的图形,且a=3b,则根据这个图形不能得到的等式是()A.(a+b)2=4ab+(a-b)2 B.4b2+4ab=(a+b)2C.(a-b)2=16b2-4ab D.(a-b)2+12a2=(a+b)22.已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为()A.1 B.﹣1 C.2 D.﹣23.把(a2+1)2-4a2分解因式得()A.(a2+1-4a)2 B.(a2+1+2a)(a2+1-2a)C.(a+1)2(a-1)2 D.(a2-1)24.已知a、b满足,则a+b的值为()A.-2014 B.4028 C.0 D.20145.估算的值()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间6.化简的结果为()A. B. C. D.7.广州市发布2019年上半年空气质量状况,城区PM2.5平均浓度为0.000029克/立方米,0.000029用科学记数法表示为()A.2.9 B.2.9 C.2.9 D.2.98.下列交通标识中,是轴对称图形的是()A. B. C. D.9.已知多边形的每个内角都是108°,则这个多边形是()A.五边形 B.七边形 C.九边形 D.不能确定10.要使分式有意义,则x的取值范围是()A.x= B.x> C.x< D.x≠二、填空题(每小题3分,共24分)11.如果点(,)关于x轴的对称点在第四象限内,则m的取值范围是________.12.如图,在△ABC中,AB=AC=5,BC=6,AD是∠BAC的平分线,AD=1.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是_____.13.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量,设原来每天生产汽车辆,则列出的不等式为________.14.计算(2a)3的结果等于__.15.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE=40°,则∠DBC=_____.16.将一副三角尺如图所示叠放在一起,若AB=4cm,则阴影部分的面积是_____cm1.17.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=50°,则∠DCE的度数是__.18.三角形的三个内角分别为75°,80°,25°,现有一条直线将它分成两个等腰三角形,那么这两个等腰三角形的顶角的度数分别是_____.三、解答题(共66分)19.(10分)某服务厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:(I)买一套西装送一条领带;(II)西装和领带均按定价的90%付款.某超市经理现要到该服务厂购买西装20套,领带若干条(不少于20条).(1)设购买领带为x(条),采用方案I购买时付款数为y1(元),采用方案II购买时付款数为(元).分别写出采用两种方案购买时付款数与领带条数x之间的函数关系式;(2)就领带条数x讨论在上述方案中采用哪种方案购买合算.20.(6分)“垃圾分类”意识已经深入人心.我校王老师准备用元(全部用完)购买两类垃圾桶,已知类桶单价元,类桶单价元,设购入类桶个,类桶个.(1)求关于的函数表达式.(2)若购进的类桶不少于类桶的倍.①求至少购进类桶多少个?②根据临场实际购买情况,王老师在总费用不变的情况下把一部分类桶调换成另一种类桶,且调换后类桶的数量不少于类桶的数量,已知类桶单价元,则按这样的购买方式,类桶最多可买个.(直接写出答案)21.(6分)如图,在平面直角坐标系中,A(-1,2),B(1,1),C(-4,-1).

(1)在图中作出关于轴对称的.(2)写出的坐标(直接写答案),,.22.(8分)如图,,分别是等边三角形边、上的一点,且,连接、相交于点.(1)求证:;(2)求的度数.23.(8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位长度,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;(3)直接写出点B2,C2的坐标.24.(8分)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.25.(10分)如图,点A、、、在同一直线上,,AF∥DE,.求证:.26.(10分)谁更合理?某种牙膏上部圆的直径为2.6cm,下部底边的长为4cm,如图,现要制作长方体的牙膏盒,牙膏盒底面是正方形,在手工课上,小明、小亮、小丽、小芳制作的牙膏盒的高度都一样,且高度符合要求.不同的是底面正方形的边长,他们制作的边长如下表:制作者小明小亮小丽小芳正方形的边长2cm2.6cm3cm3.4cm(1)这4位同学制作的盒子都能装下这种牙膏吗?()(2)若你是牙膏厂的厂长,从节约材料又方便取放牙膏的角度来看,你认为谁的制作更合理?并说明理由.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据题意得出大正方形边长为(a+b),面积为(a+b)2,中间小正方形的边长为(a-b),面积为(a-b)2,然后根据图形得出不同的等式,对各选项进行验证即可.【详解】图②中的大正方形边长为(a+b),面积为(a+b)2,中间小正方形的边长为(a-b),面积为(a-b)2,由题意可知,大正方形的面积=四个小长方形的面积+小正方形的面积,即=(a+b)2=4ab+(a-b)2,故A项正确;∵a=3b,∴小正方形的面积可表示为4b2,即四个小长方形的面积+小正方形的面积=大正方形的面积,可表示为4b2+4ab=(a+b)2,故B项正确;大正方形的面积可表示为16b2,即大正方形的面积-四个小长方形的面积=小正方形的面积,可表示为(a-b)2=16b2-4ab,故C项正确;只有D选项无法验证,故选:D.【点睛】本题考查了等式的性质及应用,正方形的性质及应用,根据图形得出代数式是解题关键.2、A【解析】试题解析:∵是关于x、y的方程4kx-3y=-1的一个解,

∴代入得:8k-9=-1,

解得:k=1,

故选A.3、C【分析】先利用平方差公式,再利用完全平方公式,进行因式分解,即可.【详解】原式=(a1+1+1a)(a1+1-1a)=(a+1)1(a-1)1.故选:C.【点睛】本题主要考查分解因式,掌握平方差公式,完全平方公式,是解题的关键.4、D【解析】试题分析:由题意得,a-1≥0且1-a≥0,所以,a≥1且a≤1,所以,a=1,b=0,所以,a+b=1+0=1.故选D.考点:二次根式有意义的条件.5、C【分析】应先找到所求的无理数在哪两个和它接近的数之间,然后判断出所求的无理数的范围,由此即可求解.【详解】解:∵∴,,∴,即,∴的值在3和4之间.故选:C.【点睛】本题主要考查无理数的估算,掌握无理数的估算方法是解题的关键.6、B【解析】根据分式加减法的运算法则按顺序进行化简即可.【详解】原式====故选B【点睛】本题考查分式的运算、平方差公式、完全平方公式,熟练掌握分式运算法则、公式法因式分解是解题关键.7、A【分析】科学记数法表示较小数时的形式为,其中,n为正整数,只要找到a,n即可.【详解】故选:A.【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键.8、B【解析】某个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形,以上图形中,B是轴对称图形,故选B9、A【分析】首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【详解】∵多边形的每个内角都是108°,

∴每个外角是180°-108°=72°,

∴这个多边形的边数是360°÷72°=5,

∴这个多边形是五边形,

故选A.【点睛】此题考查多边形的外角与内角,解题关键是掌握多边形的外角与它相邻的内角互补.10、D【解析】本题主要考查分式有意义的条件:分母不能为0,即3x−7≠0,解得x.【详解】∵3x−7≠0,∴x≠.故选D.【点睛】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.二、填空题(每小题3分,共24分)11、【分析】利用关于轴对称点的性质可知点P在第一象限,由此根据第一象限点的坐标的特征列不等式组即可解答.【详解】∵点P(,)关于轴的对称点在第四象限内,∴点P(,)在第一象限,∴,解得:.故答案为:.【点睛】本题主要考查了关于轴对称点的性质以及象限内点的坐标特点,正确记忆各象限内点的坐标符号是解题关键.12、【分析】由等腰三角形的三线合一可得出AD垂直平分BC,过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长,在△ABC中,利用面积法可求出BQ的长度,此题得解.【详解】∵AB=AC,AD是∠BAC的平分线,∴AD垂直平分BC,∴BP=CP.如图,过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长,∵S△ABC=BC•AD=AC•BQ,∴BQ==,即PC+PQ的最小值是.故答案为.【点睛】本题考查了轴对称﹣最短路线问题、等腰三角形的性质以及三角形的面积,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.13、【分析】首先根据题意可得改进生产工艺后,每天生产汽车(x+6)辆,根据关键描述语:现在15天的产量就超过了原来20天的产量列出不等式即可.【详解】解:设原来每天最多能生产x辆,由题意得:

15(x+6)>20x,故答案为:【点睛】此题主要考查了由实际问题抽象出一元一次不等式,关键是正确理解题意,抓住关键描述语.14、8【解析】试题分析:根据幂的乘方与积的乘方运算法则进行计算即可考点:(1)、幂的乘方;(2)、积的乘方15、15°.【解析】先根据线段垂直平分线的性质得出DA=DB,∠AED=∠BED=90,即可得出∠A=∠ABD,∠BDE=∠ADE,然后根据直角三角形的两锐角互余和等腰三角形的性质分别求出∠ABD,∠ABC的度数,即可求出∠DBC的度数.【详解】∵AB的垂直平分线交AC于D,交AB于E,∴DA=DB,∠AED=∠BED=90,∴∠A=∠ABD,∠BDE=∠ADE,∵∠ADE=40,∴∠A=∠ABD=90=50,∵AB=AC,∴∠ABC=,∴∠DBC=∠ABC-∠ABD=15.故答案为:15.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质.16、1【分析】根据30°的直角三角形,30°所对的边是斜边的一半,可得AC=1cm,进而求出阴影三角形的面积.【详解】解:∵∠B=30°,∠ACB=90°,AB=4cm,∴AC=1cm,∵∠AED=∠ACB=90°,∴BC∥ED,∴∠AFC=∠ADE=45°,∴AC=CF=1cm.故S△ACF=×1×1=1(cm1).故答案为1.【点睛】本题考查了30°的直角三角形的性质,熟练掌握相关性质定理是解题关键.17、10°.【分析】根据∠ECD=∠ECB-∠DCB,求出∠ECB,∠DCB即可解决问题.【详解】∵∠A=30°,∠B=50°,∴∠ACB=180°﹣∠A﹣∠B=100°,∵EC平分∠ACB,∵∠ECB=∠ACB=50°,∵CD⊥AB,∴∠CDB=90°,∴∠DCB=90°﹣50°=40°,∴∠ECD=∠ECB﹣∠DCB=50°﹣40°=10°,故答案为10°.【点睛】本题考查三角形内角和定理,角平分线的定义,三角形的高等知识,解题的关键是熟练掌握基本知识.18、80°,130°【分析】如图所示,首先在△ACB的内部做∠ACD=25°,从而可得到△ADC为等腰三角形,然后再证明△BDC为等腰三角形,从而可得到问题的答案.【详解】解:如图所示:∠A=25°,∠B=80°,∠ACB=75°,作∠ACD=∠A=25°,则三角形ADC为等腰三角形,且∠DCB=75°−25°=50°,由三角形的外角的性质可知∠BDC=∠A+∠ACD=50°,∴∠DCB=∠BDC,∴△BDC为等腰三角形.∴∠ADC=180°−50°=130°,∴这两个等腰三角形的顶角的度数分别是:80°,130°,故答案为80°,130°.【点睛】本题主要考查的是等腰三角形的判定和性质、三角形外角的性质,熟练掌握相关知识是解题的关键.三、解答题(共66分)19、(1)yI=40x+3200(x≥20);yII=36x+3600(x≥20);(2)买1条领带时,可采用两种方案之一;购买领带超过1条时,采用方案II购买合算;购买领带20条以上不超过1条时,采用方案I购买合算【分析】(1)根据两种方案的购买方法即可列式计算得到答案;(2)先计算yI=yII时的x值,再分析超过1条时和20条以上不超过1条时的购买方案.【详解】解:(1)yI=200×20+(x﹣20)×40=40x+3200(x≥20)yII=200×20×90%+x×40×90%=36x+3600(x≥20).(2)当yI=yII时,40x+3200=36x+3600,解得x=1.即:买1条领带时,可采用两种方案之一.当yI>yII时,40x+3200>36x+3600,解得x>1,即购买领带超过1条时,采用方案II合算.当yI<yII时,40x+3200<36x+3600,解得x<1,即购买领带20条以上不超过1条时,采用方案I购买合算.【点睛】此题考查运用一次函数解决实际问题,正确理解题意列得函数关系式是解题的关键,(2)是方案选择问题,注意分类思想.20、(1);(2)①50;②18.【分析】(1)根据题意,通过等量关系进行列式即可得解;(2)①根据购进的类桶不少于类桶的倍的不等关系进行列式求解即可得解;②根据题意设类桶的数量为a,根据A类桶单价与C类桶单价的比值关系确定不等式,进而求解,由总费用不变即可得到B类桶的数量.【详解】(1)由题意,得,整理得∴关于的函数表达式为;(2)①购进的类桶不少于类桶的倍,解得∴至少购买类桶个;②当时,∵类桶单价元,类桶单价元∴类桶单价:类桶单价=2:3设调换后C有a本由题意得:解得,可知a时2的倍数∵,a为正整数∴∴类桶最多可买18个.【点睛】本题主要考查了一次函数表达式的确定以及一元一次不等式的实际应用,结合实际情况求解不等式是解决本题的关键.21、(1)见解析;(2),,【分析】(1)作出关于轴对称的对称点,顺次连接起来,即可;(2)根据坐标系中的的位置,即可得到答案.【详解】(1)如图所示:(2)根据坐标系中的,可得:,,,故答案是:,,.

【点睛】本题主要考查平面直角坐标系中图形的轴对称变换以及点的坐标,画出原三角形各个顶点关于y轴的对称点,是解题的关键.22、(1)见解析;(2)【分析】(1)根据等边三角形的性质,三条边都相等、三个内角都是,即可根据边角边定理判定出.(2)根据全等三角形的性质、三角形的外角定理进行转化即可得出的度数.【详解】(1)证明:∵是等边三角形∴,在和中∴(2)解:∵∴∵∴【点睛】本题考查了等边三角形的性质、全等三角形的判定以及性质、三角形的外角定理等知识点,较为基础.23、(1)答案见解析;(2)答案见解析;(3)点B2(4,-2),C2(1,-3).【解析】试题分析:(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.试题解析:解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).24、(1)证明见解析(2)40°.【分析】(1)根据菱形的对边平行且相等可得AB=CD,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论